List of unsolved problems in mathematics

From testwiki
Jump to navigation Jump to search

Template:Pp Template:Short description

Template:Dynamic list

Many mathematical problems have been stated but not yet solved. These problems come from many areas of mathematics, such as theoretical physics, computer science, algebra, analysis, combinatorics, algebraic, differential, discrete and Euclidean geometries, graph theory, group theory, model theory, number theory, set theory, Ramsey theory, dynamical systems, and partial differential equations. Some problems belong to more than one discipline and are studied using techniques from different areas. Prizes are often awarded for the solution to a long-standing problem, and some lists of unsolved problems, such as the Millennium Prize Problems, receive considerable attention.

This list is a composite of notable unsolved problems mentioned in previously published lists, including but not limited to lists considered authoritative, and the problems listed here vary widely in both difficulty and importance.

Lists of unsolved problems in mathematics

Various mathematicians and organizations have published and promoted lists of unsolved mathematical problems. In some cases, the lists have been associated with prizes for the discoverers of solutions.

List Number of
problems
Number unsolved
or incompletely solved
Proposed by Proposed
in
Hilbert's problems[1] 23 15 David Hilbert 1900
Landau's problems[2] 4 4 Edmund Landau 1912
Taniyama's problems[3] 36 Yutaka Taniyama 1955
Thurston's 24 questions[4][5] 24 William Thurston 1982
Smale's problems 18 14 Stephen Smale 1998
Millennium Prize Problems 7 6[6] Clay Mathematics Institute 2000
Simon problems 15 < 12[7][8] Barry Simon 2000
Unsolved Problems on Mathematics for the 21st Century[9] 22 Jair Minoro Abe, Shotaro Tanaka 2001
DARPA's math challenges[10][11] 23 DARPA 2007
Erdős's problems[12] > 934 617 Paul Erdős Over six decades of Erdős' career, from the 1930s to 1990s
The Riemann zeta function, subject of the Riemann hypothesis[13]

Millennium Prize Problems

Of the original seven Millennium Prize Problems listed by the Clay Mathematics Institute in 2000, six remain unsolved to date:[6]

The seventh problem, the Poincaré conjecture, was solved by Grigori Perelman in 2003.[14] However, a generalization called the smooth four-dimensional Poincaré conjecture—that is, whether a four-dimensional topological sphere can have two or more inequivalent smooth structures—is unsolved.[15]

Notebooks

Unsolved problems

Algebra

Template:Main

In the Bloch sphere representation of a qubit, a SIC-POVM forms a regular tetrahedron. Zauner conjectured that analogous structures exist in complex Hilbert spaces of all finite dimensions.

Group theory

Template:Main

The free Burnside group B(2,3) is finite; in its Cayley graph, shown here, each of its 27 elements is represented by a vertex. The question of which other groups B(m,n) are finite remains open.

Representation theory

Analysis

Template:Main

Combinatorics

Template:Main

Dynamical systems

Template:Main

A detail of the Mandelbrot set. It is not known whether the Mandelbrot set is locally connected or not.

Games and puzzles

Template:Main

Combinatorial games

Template:Main

Games with imperfect information

Geometry

Template:Main

Algebraic geometry

Template:Main

Covering and packing

Differential geometry

Template:Main

Discrete geometry

Template:Main

In three dimensions, the kissing number is 12, because 12 non-overlapping unit spheres can be put into contact with a central unit sphere. (Here, the centers of outer spheres form the vertices of a regular icosahedron.) Kissing numbers are only known exactly in dimensions 1, 2, 3, 4, 8 and 24.

Euclidean geometry

Template:Main

Graph theory

Template:Main

Algebraic graph theory

Games on graphs

Graph coloring and labeling

An instance of the Erdős–Faber–Lovász conjecture: a graph formed from four cliques of four vertices each, any two of which intersect in a single vertex, can be four-colored.

Graph drawing and embedding

Restriction of graph parameters

Subgraphs

Word-representation of graphs

Miscellaneous graph theory

Model theory and formal languages

Template:Main

  • Assume K is the class of models of a countable first order theory omitting countably many types. If K has a model of cardinality ω1 does it have a model of cardinality continuum?[143]
  • Do the Henson graphs have the finite model property?
  • Does a finitely presented homogeneous structure for a finite relational language have finitely many reducts?
  • Does there exist an o-minimal first order theory with a trans-exponential (rapid growth) function?
  • If the class of atomic models of a complete first order theory is categorical in the n, is it categorical in every cardinal?[144][145]
  • Is every infinite, minimal field of characteristic zero algebraically closed? (Here, "minimal" means that every definable subset of the structure is finite or co-finite.)
  • Is the Borel monadic theory of the real order (BMTO) decidable? Is the monadic theory of well-ordering (MTWO) consistently decidable?[146]
  • Is the theory of the field of Laurent series over p decidable? of the field of polynomials over ?
  • Is there a logic L which satisfies both the Beth property and Δ-interpolation, is compact but does not satisfy the interpolation property?[147]
  • Determine the structure of Keisler's order.[148][149]

Probability theory

Template:Main

Number theory

Template:Main articles Template:See also

General

6 is a perfect number because it is the sum of its proper positive divisors, 1, 2 and 3. It is not known how many perfect numbers there are, nor if any of them is odd.

Additive number theory

Template:Main Template:See also

Algebraic number theory

Template:Main

  • Characterize all algebraic number fields that have some power basis.

Computational number theory

Template:Main

Diophantine approximation and transcendental number theory

Template:Further

The area of the blue region converges to the Euler–Mascheroni constant, which may or may not be a rational number.

Diophantine equations

Template:Further

Prime numbers

Template:Main Template:Prime number conjectures

Goldbach's conjecture states that all even integers greater than 2 can be written as the sum of two primes. Here this is illustrated for the even integers from 4 to 28.

Set theory

Template:Main

Note: These conjectures are about models of Zermelo-Frankel set theory with choice, and may not be able to be expressed in models of other set theories such as the various constructive set theories or non-wellfounded set theory.

Topology

Template:Main

The unknotting problem asks whether there is an efficient algorithm to identify when the shape presented in a knot diagram is actually the unknot.

Problems solved since 1995

Ricci flow, here illustrated with a 2D manifold, was the key tool in Grigori Perelman's solution of the Poincaré conjecture.

Algebra

Analysis

Combinatorics

Dynamical systems

Game theory

Geometry

21st century

20th century

Graph theory

Group theory

Number theory

21st century

20th century

Ramsey theory

Theoretical computer science

Topology

Uncategorised

2010s

2000s

See also

Notes

Template:Notelist

References

Template:Reflist

Further reading

Books discussing problems solved since 1995

Books discussing unsolved problems

Template:Unsolved problems

  1. Template:Citation
  2. Template:Citation.
  3. Template:Cite journal
  4. Template:Cite journal
  5. Template:Cite journal
  6. 6.0 6.1 Template:Cite web
  7. Template:Cite web
  8. Template:Cite web
  9. Template:Cite book
  10. Template:Cite web
  11. Template:Cite web
  12. Template:Cite web
  13. Template:Cite web
  14. Template:Cite web
  15. Template:Cite web
  16. Template:Citation
  17. Template:Cite book
  18. Template:Cite book
  19. Template:Cite book
  20. Template:Citation
  21. Template:Citation
  22. Template:Citation
  23. Template:Cite journal
  24. Template:Citation
  25. Template:Citation
  26. Template:Citation
  27. Template:SpringerEOM
  28. Template:Citation.
  29. Template:Cite journal
  30. Template:Cite journal
  31. Template:Citation
  32. Template:Citation
  33. Template:Cite web
  34. Template:Cite journal
  35. S. M. Ulam, Problems in Modern Mathematics. Science Editions John Wiley & Sons, Inc., New York, 1964, page 76.
  36. Template:Cite journal
  37. Template:Citation
  38. Paul Halmos, Ergodic theory. Chelsea, New York, 1956.
  39. Template:Cite conference
  40. 40.0 40.1 40.2 Template:Cite web
  41. Template:Cite web
  42. Template:Cite journal
  43. Template:Citation.
  44. Template:Citation
  45. Template:Cite journal
  46. Template:Citation
  47. Template:Citation
  48. Template:Citation
  49. Template:Citation
  50. Template:Citation
  51. Template:Citation
  52. Template:Cite journal
  53. Template:Citation
  54. Template:Citation
  55. Template:Citation
  56. Template:Citation
  57. Template:Citation
  58. Template:Citation.
  59. Template:Citation; Template:Citation
  60. Template:Citation.
  61. Template:Cite journal
  62. Template:Citation
  63. Template:Citation
  64. Template:Citation
  65. Template:Citation; Template:Citation.
  66. Template:Citation
  67. Template:Citation
  68. Template:Citation
  69. Template:Citation
  70. Template:Citation. Announced in 2003.
  71. Template:Citation; Template:Citation
  72. Template:Citation. See in particular Conjecture 23, p. 327.
  73. Template:Citation
  74. Template:Citation
  75. Template:Citation
  76. Template:Citation
  77. Template:Citation
  78. Template:Cite journal
  79. Template:Citation
  80. Template:Citation
  81. Template:Citation
  82. Template:Citation
  83. Template:Citation
  84. Template:Cite journal
  85. Template:Citation
  86. Template:Citation.
  87. Template:Harvtxt
  88. Template:Citation
  89. Template:Citation
  90. Template:Harvtxt
  91. Template:Citation
  92. Template:Citation
  93. Template:Citation.
  94. Template:Citation
  95. Template:Citation.
  96. Template:Citation, Problem G10.
  97. Template:Citation.
  98. Template:Citation.
  99. Template:Citation.
  100. Template:Citation.
  101. Template:Citation.
  102. Template:Citation
  103. Template:Citation.
  104. Template:Citation.
  105. Template:Citation
  106. Template:Citation.
  107. Template:Citation.
  108. Template:Citation
  109. Template:Citation.
  110. Template:Citation
  111. Template:Citation
  112. Template:Citation.
  113. Template:Citation
  114. Template:Citation.
  115. Template:Citation.
  116. Template:Citation.
  117. Template:Citation.
  118. Template:Cite book
  119. Template:Citation
  120. Template:Citation
  121. Template:Cite conference
  122. Template:Citation
  123. Template:Citation.
  124. Template:Cite journal
  125. Template:Citation.
  126. 126.0 126.1 126.2 126.3 126.4 Template:Cite book
  127. 127.0 127.1 127.2 127.3 127.4 Template:Cite conference
  128. 128.0 128.1 128.2 128.3 128.4 Template:Cite journal
  129. 129.0 129.1 129.2 129.3 129.4 Template:Cite journal
  130. Template:Cite arXiv
  131. Template:Cite arXiv
  132. Template:Cite journal
  133. Template:Citation.
  134. Template:Cite web
  135. Template:Cite web
  136. Template:Cite web
  137. Template:Cite journal
  138. 138.0 138.1 138.2 Template:Cite book
  139. Template:Cite book
  140. Template:Cite journal
  141. Template:Cite journal
  142. Džamonja, Mirna, "Club guessing and the universal models." On PCF, ed. M. Foreman, (Banff, Alberta, 2004).
  143. Template:Cite journal
  144. Template:Cite book
  145. Template:Cite arXiv
  146. Gurevich, Yuri, "Monadic Second-Order Theories," in J. Barwise, S. Feferman, eds., Model-Theoretic Logics (New York: Springer-Verlag, 1985), 479–506.
  147. Makowsky J, "Compactness, embeddings and definability," in Model-Theoretic Logics, eds Barwise and Feferman, Springer 1985 pps. 645–715.
  148. Template:Cite journal
  149. Template:Cite arXiv Template:Cite arXiv
  150. Template:Citation
  151. Template:Citation.
  152. Template:Citation
  153. Template:Cite web
  154. Template:Cite journal
  155. 155.0 155.1 Template:Citation
  156. Template:Cite conference
  157. Template:Citation
  158. For some background on the numbers in this problem, see articles by Eric W. Weisstein at Wolfram MathWorld (all articles accessed 22 August 2024):
  159. 159.0 159.1 Template:Cite arXiv
  160. Template:Citation
  161. Template:Cite web
  162. Template:Citation
  163. Template:Cite arXiv
  164. Template:Cite arXiv
  165. Template:Cite book
  166. Template:Citation
  167. Template:Citation
  168. Template:Cite journal
  169. Template:Cite journal
  170. Template:Cite journal
  171. Template:Citation
  172. Template:Cite book
  173. Template:Cite news
  174. 174.0 174.1 Template:Cite arXiv
  175. Template:Cite journal
  176. Template:Cite journal
  177. Template:Citation. See in particular p. 316.
  178. Template:Cite web
  179. Template:Cite journal
  180. Template:Cite journal
  181. Template:Cite journal
  182. Template:Cite journal
  183. Template:Cite journal
  184. Template:Cite journal
  185. Template:Cite web
  186. Template:Cite arXiv
  187. Template:Cite arXiv
  188. Template:Cite journal
  189. Template:Cite web
  190. Template:Cite web
  191. Template:Cite web
  192. Template:Cite journal
  193. Template:Cite web
  194. Template:Cite journal
  195. Template:Cite arXiv
  196. Template:Citation
  197. Template:Cite web
  198. Template:Cite web
  199. Template:Citation
  200. Template:Cite journal
  201. Template:Cite journal
  202. Template:Cite web
  203. Template:Cite journal
  204. Template:Citation
  205. Template:Citation
  206. Template:Cite journal
  207. Template:Cite journal
  208. Template:Cite journal
  209. Template:Cite journal
  210. Template:Cite journal
  211. Template:Cite journal
  212. Template:Cite journal
  213. Template:Cite journal
  214. Template:Cite arXiv
  215. Template:Cite journal
  216. Template:Cite journal.
  217. Template:Cite web
  218. Template:Cite journal
  219. Template:Cite journal
  220. Template:Cite journal
  221. Template:Cite journal
  222. Template:Cite journal
  223. Template:Cite arXiv
  224. Template:Cite journal
  225. Template:Cite journal
  226. Template:Cite conference
  227. Template:Cite journal
  228. Template:Cite news
  229. Template:Cite book
  230. Template:Cite journal
  231. Klin, M. H., M. Muzychuk and R. Poschel: The isomorphism problem for circulant graphs via Schur ring theory, Codes and Association Schemes, American Math. Society, 2001.
  232. Template:Cite journal
  233. Template:Cite journal
  234. Template:Cite journal
  235. Template:Cite journal
  236. Template:Cite arXiv
  237. Template:Cite journal
  238. Template:Cite arXiv
  239. Template:Cite arXiv
  240. Template:Cite arXiv
  241. Template:Cite journal
  242. Template:Cite web
  243. Template:Cite journal
  244. Template:Cite journal
  245. Template:Citation
  246. Template:Citation
  247. Template:Cite journal
  248. Template:Cite journal
  249. Template:Cite journal
  250. Template:Cite book Template:Cite journal
  251. Template:Citation
  252. Template:Cite journal
  253. Template:Cite journal
  254. Template:Cite journal
  255. Template:Cite journal
  256. Template:Cite book
  257. Template:Cite web
  258. Template:Cite journal
  259. Template:Cite web
  260. Template:Cite journal
  261. Template:Cite journal
  262. Template:Cite journal
  263. Template:Cite journal
  264. Template:Cite journal
  265. 265.0 265.1 Template:Cite press release
  266. Template:Cite arXiv
  267. Template:Cite journal
  268. Template:Cite web
  269. Template:Cite arXiv
  270. Template:Cite journal
  271. Template:Cite journal
  272. Template:Cite magazine
  273. Template:Cite arXiv
  274. Template:Cite web
  275. Template:Cite journal
  276. Template:Cite web
  277. Template:Cite web
  278. Template:Cite journal
  279. Template:Cite journal
  280. Template:Cite journal
  281. Template:Citation
  282. Template:Cite web
  283. Template:Cite journal
  284. Template:Cite web
  285. Template:Cite journal
  286. Template:Cite journal
  287. Template:Cite journal
  288. Template:Cite journal
  289. Template:Cite journal
  290. Template:Cite journal
  291. Template:Citation
  292. Template:Cite journal
  293. Template:Cite book