List of definite integrals

From testwiki
Jump to navigation Jump to search

Template:Short description Template:Dynamic list{{#invoke:sidebar|collapsible | class = plainlist | titlestyle = padding-bottom:0.25em; | pretitle = Part of a series of articles about | title = Calculus | image = abf(t)dt=f(b)f(a) | listtitlestyle = text-align:center; | liststyle = border-top:1px solid #aaa;padding-top:0.15em;border-bottom:1px solid #aaa; | expanded = Integral calculus | abovestyle = padding:0.15em 0.25em 0.3em;font-weight:normal; | above =

Template:Startflatlist

Template:EndflatlistTemplate:Startflatlist

Template:Endflatlist

| list2name = differential | list2titlestyle = display:block;margin-top:0.65em; | list2title = Template:Bigger | list2 ={{#invoke:sidebar|sidebar|child=yes

 |contentclass=hlist
 | heading1 = Definitions
 | content1 =
 | heading2 = Concepts
 | content2 =
 | heading3 = Rules and identities
 | content3 =
}}

| list3name = integral | list3title = Template:Bigger | list3 ={{#invoke:sidebar|sidebar|child=yes

 |contentclass=hlist
 | content1 =

| heading2 = Definitions

 | content2 =
 | heading3 = Integration by
 | content3 =
}}

| list4name = series | list4title = Template:Bigger | list4 ={{#invoke:sidebar|sidebar|child=yes

 |contentclass=hlist
 | content1 =
 | heading2 = Convergence tests
 | content2 =
}}

| list5name = vector | list5title = Template:Bigger | list5 ={{#invoke:sidebar|sidebar|child=yes

 |contentclass=hlist
 | content1 =
 | heading2 = Theorems
 | content2 =
}}

| list6name = multivariable | list6title = Template:Bigger | list6 ={{#invoke:sidebar|sidebar|child=yes

 |contentclass=hlist
 | heading1 = Formalisms
 | content1 =
 | heading2 = Definitions
 | content2 =
}}

| list7name = advanced | list7title = Template:Bigger | list7 ={{#invoke:sidebar|sidebar|child=yes

 |contentclass=hlist
 | content1 =
}}

| list8name = specialized | list8title = Template:Bigger | list8 =

| list9name = miscellanea | list9title = Template:Bigger | list9 =

}}In mathematics, the definite integral

abf(x)dx

is the area of the region in the xy-plane bounded by the graph of f, the x-axis, and the lines x = a and x = b, such that area above the x-axis adds to the total, and that below the x-axis subtracts from the total.

The fundamental theorem of calculus establishes the relationship between indefinite and definite integrals and introduces a technique for evaluating definite integrals.

If the interval is infinite the definite integral is called an improper integral and defined by using appropriate limiting procedures. for example:

af(x)dx=limb[abf(x)dx]

A constant, such pi, that may be defined by the integral of an algebraic function over an algebraic domain is known as a period.

The following is a list of some of the most common or interesting definite integrals. For a list of indefinite integrals see List of indefinite integrals.

Definite integrals involving rational or irrational expressions

0dx1+xp=π/psin(π/p)for (p)>1
0xp1dx1+x=πsin(pπ)for 0<p<1
0xmdxxn+an=πamn+1nsin(m+1nπ)for 0<m+1<n
0xmdx1+2xcosβ+x2=πsin(mπ)sin(mβ)sin(β)
0adxa2x2=π2
0aa2x2dx=πa24
0axm(anxn)pdx=am+1+npΓ(m+1n)Γ(p+1)nΓ(m+1n+p+1)
0xmdx(xn+an)r=(1)r1πam+1nrΓ(m+1n)nsin(m+1nπ)(r1)!Γ(m+1nr+1)for n(r2)<m+1<nr

Definite integrals involving trigonometric functions

0πsin(mx)sin(nx)dx={0if mnπ2if m=nfor m,n positive integers
0πcos(mx)cos(nx)dx={0if mnπ2if m=nfor m,n positive integers
0πsin(mx)cos(nx)dx={0if m+n even2mm2n2if m+n oddfor m,n integers.
0π2sin2(x)dx=0π2cos2(x)dx=π4
0π2sin2m(x)dx=0π2cos2m(x)dx=1×3×5××(2m1)2×4×6××2mπ2for m=1,2,3
0xsin2m(t)dt=(2m1)!!(2m)!!(xsin(x)cos(x)(1+k=1sin2k(x)(2k)!!(2k+1)!!))for m=1,2,3
0xcos2m(t)dt=(2m1)!!(2m)!!(xsin(x)cos(x)(1+k=1cos2k(x)(2k)!!(2k+1)!!))for m=1,2,3
0π2sin2m+1(x)dx=0π2cos2m+1(x)dx=2×4×6××2m1×3×5××(2m+1)for m=1,2,3
0π2sin2p1(x)cos2q1(x)dx=Γ(p)Γ(q)2Γ(p+q)=12B(p,q)
0sin(px)xdx={π2if p>00if p=0π2if p<0 (see Dirichlet integral)
0sinpxcosqxx dx={0 if q>p>0π2 if 0<q<pπ4 if p=q>0
0sinpxsinqxx2 dx={πp2 if 0<pqπq2 if 0<qp
0sin2pxx2 dx=πp2
01cospxx2 dx=πp2
0cospxcosqxx dx=lnqp
0cospxcosqxx2 dx=π(qp)2
0cosmxx2+a2 dx=π2aema
0xsinmxx2+a2 dx=π2ema
0sinmxx(x2+a2) dx=π2a2(1ema)
02πdxa+bsinx=2πa2b2
02πdxa+bcosx=2πa2b2
0π2dxa+bcosx=cos1(ba)a2b2
02πdx(a+bsinx)2=02πdx(a+bcosx)2=2πa(a2b2)3/2
02πdx12acosx+a2=2π1a2for 0<a<1
0πxsinx dx12acosx+a2={πaln|1+a|if |a|<1πaln|1+1a|if |a|>1
0πcosmx dx12acosx+a2=πam1a2for a2<1 , m=0,1,2,
0sinax2 dx=0cosax2=12π2a
0sinaxn=1na1/nΓ(1n)sinπ2nfor n>1
0cosaxn=1na1/nΓ(1n)cosπ2nfor n>1
0sinxx dx=0cosxx dx=π2
0sinxxp dx=π2Γ(p)sin(pπ2)for 0<p<1
0cosxxp dx=π2Γ(p)cos(pπ2)for 0<p<1
0sinax2cos2bx dx=12π2a(cosb2asinb2a)
0cosax2cos2bx dx=12π2a(cosb2a+sinb2a)

Definite integrals involving exponential functions

0xexdx=12π (see also Gamma function)
0eaxcosbxdx=aa2+b2
0eaxsinbxdx=ba2+b2
0eaxsinbxxdx=tan1ba
0eaxebxxdx=lnba
0eaxcos(bx)xdx=lnba
0eax2dx=12πafor a>0 (the Gaussian integral)
0eax2cosbxdx=12πae(b24a)
0e(ax2+bx+c)dx=12πae(b24ac4a)erfcb2a, where erfc(p)=2πpex2dx
e(ax2+bx+c) dx=πae(b24ac4a)
0xneax dx=Γ(n+1)an+1
0x2eax2dx=14πa3for a>0
0x2neax2dx=2n12a0x2(n1)eax2dx=(2n1)!!2n+1πa2n+1=(2n)!n!22n+1πa2n+1for a>0 , n=1,2,3 (where !! is the double factorial)
0x3eax2dx=12a2for a>0
0x2n+1eax2dx=na0x2n1eax2dx=n!2an+1for a>0 , n=0,1,2
0xmeax2 dx=Γ(m+12)2a(m+12)
0e(ax2bx2) dx=12πae2ab
0xex1 dx=ζ(2)=π26
0xn1ex1 dx=Γ(n)ζ(n)
0xex+1 dx=112122+132142+=π212
0xnex+1 dx=n!(2n12n)ζ(n+1)
0sinmxe2πx1 dx=14cothm212m
0(11+xex) dxx=γ (where γ is Euler–Mascheroni constant)
0ex2exx dx=γ2
0(1ex1exx) dx=γ
0eaxebxxsecpx dx=12lnb2+p2a2+p2
0eaxebxxcscpx dx=tan1bptan1ap
0eax(1cosx)x2 dx=cot1aa2ln|a2+1a2|
ex2dx=π
x2(n+1)e12x2dx=(2n+1)!2nn!2πfor n=0,1,2,

Definite integrals involving logarithmic functions

01xm(lnx)ndx=(1)nn!(m+1)n+1for m>1,n=0,1,2,
1xm(lnx)ndx=(1)n+1n!(m+1)n+1for m<1,n=0,1,2,
01lnx1+xdx=π212
01lnx1xdx=π26
01ln(1+x)xdx=π212
01ln(1x)xdx=π26
0ln(a2+x2)b2+x2 dx=πbln(a+b)for a,b>0
0lnxx2+a2 dx=πlna2afor a>0

Definite integrals involving hyperbolic functions

0sinaxsinhbx dx=π2btanhaπ2b

0cosaxcoshbx dx=π2b1coshaπ2b

0xsinhax dx=π24a2

0x2n+1sinhax dx=c2n+1(πa)2(n+1),c2n+1=(1)n2(12k=0n1(1)k(2n+12k+1)c2k+1),c1=14

01coshax dx=π2a

0x2ncoshax dx=d2n(πa)2n+1,d2n=(1)n2(14nk=0n1(1)k(2n2k)d2k),d0=12

0f(ax)f(bx)x dx=(limx0f(x)limxf(x))ln(ba) holds if the integral exists and f(x) is continuous.

See also

Template:Portal

References

Template:Lists of integrals