Tangent half-angle substitution
Template:Short description {{#invoke:sidebar|collapsible | class = plainlist | titlestyle = padding-bottom:0.25em; | pretitle = Part of a series of articles about | title = Calculus | image = | listtitlestyle = text-align:center; | liststyle = border-top:1px solid #aaa;padding-top:0.15em;border-bottom:1px solid #aaa; | expanded = integral | abovestyle = padding:0.15em 0.25em 0.3em;font-weight:normal; | above =
Template:EndflatlistTemplate:Startflatlist
| list2name = differential | list2titlestyle = display:block;margin-top:0.65em; | list2title = Template:Bigger | list2 ={{#invoke:sidebar|sidebar|child=yes
|contentclass=hlist | heading1 = Definitions | content1 =
| heading2 = Concepts | content2 =
- Differentiation notation
- Second derivative
- Implicit differentiation
- Logarithmic differentiation
- Related rates
- Taylor's theorem
| heading3 = Rules and identities | content3 =
- Sum
- Product
- Chain
- Power
- Quotient
- L'Hôpital's rule
- Inverse
- General Leibniz
- Faà di Bruno's formula
- Reynolds
}}
| list3name = integral | list3title = Template:Bigger | list3 ={{#invoke:sidebar|sidebar|child=yes
|contentclass=hlist | content1 =
| heading2 = Definitions
| content2 =
- Antiderivative
- Integral (improper)
- Riemann integral
- Lebesgue integration
- Contour integration
- Integral of inverse functions
| heading3 = Integration by | content3 =
- Parts
- Discs
- Cylindrical shells
- Substitution (trigonometric, tangent half-angle, Euler)
- Euler's formula
- Partial fractions (Heaviside's method)
- Changing order
- Reduction formulae
- Differentiating under the integral sign
- Risch algorithm
}}
| list4name = series | list4title = Template:Bigger | list4 ={{#invoke:sidebar|sidebar|child=yes
|contentclass=hlist | content1 =
| heading2 = Convergence tests | content2 =
- Summand limit (term test)
- Ratio
- Root
- Integral
- Direct comparison
Limit comparison- Alternating series
- Cauchy condensation
- Dirichlet
- Abel
}}
| list5name = vector | list5title = Template:Bigger | list5 ={{#invoke:sidebar|sidebar|child=yes
|contentclass=hlist | content1 =
| heading2 = Theorems | content2 =
}}
| list6name = multivariable | list6title = Template:Bigger | list6 ={{#invoke:sidebar|sidebar|child=yes
|contentclass=hlist | heading1 = Formalisms | content1 =
| heading2 = Definitions | content2 =
- Partial derivative
- Multiple integral
- Line integral
- Surface integral
- Volume integral
- Jacobian
- Hessian
}}
| list7name = advanced | list7title = Template:Bigger | list7 ={{#invoke:sidebar|sidebar|child=yes
|contentclass=hlist | content1 =
}}
| list8name = specialized | list8title = Template:Bigger | list8 =
| list9name = miscellanea | list9title = Template:Bigger | list9 =
- Precalculus
- History
- Glossary
- List of topics
- Integration Bee
- Mathematical analysis
- Nonstandard analysis
}}
In integral calculus, the tangent half-angle substitution is a change of variables used for evaluating integrals, which converts a rational function of trigonometric functions of into an ordinary rational function of by setting . This is the one-dimensional stereographic projection of the unit circle parametrized by angle measure onto the real line. The general[1] transformation formula is:
The tangent of half an angle is important in spherical trigonometry and was sometimes known in the 17th century as the half tangent or semi-tangent.[2] Leonhard Euler used it to evaluate the integral in his 1768 integral calculus textbook,[3] and Adrien-Marie Legendre described the general method in 1817.[4]
The substitution is described in most integral calculus textbooks since the late 19th century, usually without any special name.Template:R It is known in Russia as the universal trigonometric substitution,[5] and also known by variant names such as half-tangent substitution or half-angle substitution. It is sometimes misattributed as the Weierstrass substitution.Template:R Michael Spivak called it the "world's sneakiest substitution".[6]
The substitution

Introducing a new variable sines and cosines can be expressed as rational functions of and can be expressed as the product of and a rational function of as follows:
Similar expressions can be written for Template:Math, Template:Math, Template:Math, and Template:Math.
Derivation
Using the double-angle formulas and and introducing denominators equal to one by the Pythagorean identity results in
Finally, since , differentiation rules imply
and thus
Examples
Antiderivative of cosecant
We can confirm the above result using a standard method of evaluating the cosecant integral by multiplying the numerator and denominator by and performing the substitution .
These two answers are the same because
The secant integral may be evaluated in a similar manner.
A definite integral
In the first line, one cannot simply substitute for both limits of integration. The singularity (in this case, a vertical asymptote) of at must be taken into account. Alternatively, first evaluate the indefinite integral, then apply the boundary values. By symmetry, which is the same as the previous answer.
Third example: both sine and cosine
if
Geometry

As x varies, the point (cos x, sin x) winds repeatedly around the unit circle centered at (0, 0). The point
goes only once around the circle as t goes from −∞ to +∞, and never reaches the point (−1, 0), which is approached as a limit as t approaches ±∞. As t goes from −∞ to −1, the point determined by t goes through the part of the circle in the third quadrant, from (−1, 0) to (0, −1). As t goes from −1 to 0, the point follows the part of the circle in the fourth quadrant from (0, −1) to (1, 0). As t goes from 0 to 1, the point follows the part of the circle in the first quadrant from (1, 0) to (0, 1). Finally, as t goes from 1 to +∞, the point follows the part of the circle in the second quadrant from (0, 1) to (−1, 0).
Here is another geometric point of view. Draw the unit circle, and let P be the point Template:Nowrap. A line through P (except the vertical line) is determined by its slope. Furthermore, each of the lines (except the vertical line) intersects the unit circle in exactly two points, one of which is P. This determines a function from points on the unit circle to slopes. The trigonometric functions determine a function from angles to points on the unit circle, and by combining these two functions we have a function from angles to slopes.
Hyperbolic functions
As with other properties shared between the trigonometric functions and the hyperbolic functions, it is possible to use hyperbolic identities to construct a similar form of the substitution, :
Similar expressions can be written for Template:Math, Template:Math, Template:Math, and Template:Math. Geometrically, this change of variables is a one-dimensional stereographic projection of the hyperbolic line onto the real interval, analogous to the Poincaré disk model of the hyperbolic plane.
Alternatives
There are other approaches to integrating trigonometric functions. For example, it can be helpful to rewrite trigonometric functions in terms of Template:Math and Template:Math using Euler's formula.
See also
- Rational curve
- Stereographic projection
- Tangent half-angle formula
- Trigonometric substitution
- Euler substitution
Further reading
- Template:Cite book
- Template:Cite book
- Template:Cite book Second edition 1916, pp. 52–62
- Template:Cite book
- Template:Cite book
Notes and references
External links
- ↑ Other trigonometric functions can be written in terms of sine and cosine.
- ↑ Template:Cite book p. 73
- ↑ Template:Cite book E342, Translation by Ian Bruce.
Also see Template:Cite journal - ↑ Template:Cite book p. 245–246.
- ↑ Template:Cite book Template:Pb Template:Cite book
- ↑ Template:Cite book