Integration using Euler's formula

From testwiki
Jump to navigation Jump to search

Template:Short description Template:More citations needed {{#invoke:sidebar|collapsible | class = plainlist | titlestyle = padding-bottom:0.25em; | pretitle = Part of a series of articles about | title = Calculus | image = abf(t)dt=f(b)f(a) | listtitlestyle = text-align:center; | liststyle = border-top:1px solid #aaa;padding-top:0.15em;border-bottom:1px solid #aaa; | expanded = integral | abovestyle = padding:0.15em 0.25em 0.3em;font-weight:normal; | above =

Template:Startflatlist

Template:EndflatlistTemplate:Startflatlist

Template:Endflatlist

| list2name = differential | list2titlestyle = display:block;margin-top:0.65em; | list2title = Template:Bigger | list2 ={{#invoke:sidebar|sidebar|child=yes

 |contentclass=hlist
 | heading1 = Definitions
 | content1 =
 | heading2 = Concepts
 | content2 =
 | heading3 = Rules and identities
 | content3 =
}}

| list3name = integral | list3title = Template:Bigger | list3 ={{#invoke:sidebar|sidebar|child=yes

 |contentclass=hlist
 | content1 =

| heading2 = Definitions

 | content2 =
 | heading3 = Integration by
 | content3 =
}}

| list4name = series | list4title = Template:Bigger | list4 ={{#invoke:sidebar|sidebar|child=yes

 |contentclass=hlist
 | content1 =
 | heading2 = Convergence tests
 | content2 =
}}

| list5name = vector | list5title = Template:Bigger | list5 ={{#invoke:sidebar|sidebar|child=yes

 |contentclass=hlist
 | content1 =
 | heading2 = Theorems
 | content2 =
}}

| list6name = multivariable | list6title = Template:Bigger | list6 ={{#invoke:sidebar|sidebar|child=yes

 |contentclass=hlist
 | heading1 = Formalisms
 | content1 =
 | heading2 = Definitions
 | content2 =
}}

| list7name = advanced | list7title = Template:Bigger | list7 ={{#invoke:sidebar|sidebar|child=yes

 |contentclass=hlist
 | content1 =
}}

| list8name = specialized | list8title = Template:Bigger | list8 =

| list9name = miscellanea | list9title = Template:Bigger | list9 =

}} In integral calculus, Euler's formula for complex numbers may be used to evaluate integrals involving trigonometric functions. Using Euler's formula, any trigonometric function may be written in terms of complex exponential functions, namely eix and eix and then integrated. This technique is often simpler and faster than using trigonometric identities or integration by parts, and is sufficiently powerful to integrate any rational expression involving trigonometric functions.[1]

Euler's formula

Euler's formula states that[2]

eix=cosx+isinx.

Substituting x for x gives the equation

eix=cosxisinx

because cosine is an even function and sine is odd. These two equations can be solved for the sine and cosine to give

cosx=eix+eix2andsinx=eixeix2i.

Examples

First example

Consider the integral

cos2xdx.

The standard approach to this integral is to use a half-angle formula to simplify the integrand. We can use Euler's identity instead:

cos2xdx=(eix+eix2)2dx=14(e2ix+2+e2ix)dx

At this point, it would be possible to change back to real numbers using the formula Template:Math. Alternatively, we can integrate the complex exponentials and not change back to trigonometric functions until the end:

14(e2ix+2+e2ix)dx=14(e2ix2i+2xe2ix2i)+C=14(2x+sin2x)+C.

Second example

Consider the integral

sin2xcos4xdx.

This integral would be extremely tedious to solve using trigonometric identities, but using Euler's identity makes it relatively painless:

sin2xcos4xdx=(eixeix2i)2(e4ix+e4ix2)dx=18(e2ix2+e2ix)(e4ix+e4ix)dx=18(e6ix2e4ix+e2ix+e2ix2e4ix+e6ix)dx.

At this point we can either integrate directly, or we can first change the integrand to Template:Math and continue from there. Either method gives

sin2xcos4xdx=124sin6x+18sin4x18sin2x+C.

Using real parts

In addition to Euler's identity, it can be helpful to make judicious use of the real parts of complex expressions. For example, consider the integral

excosxdx.

Since Template:Math is the real part of Template:Math, we know that

excosxdx=Reexeixdx.

The integral on the right is easy to evaluate:

exeixdx=e(1+i)xdx=e(1+i)x1+i+C.

Thus:

excosxdx=Re(e(1+i)x1+i)+C=exRe(eix1+i)+C=exRe(eix(1i)2)+C=excosx+sinx2+C.

Fractions

In general, this technique may be used to evaluate any fractions involving trigonometric functions. For example, consider the integral

1+cos2xcosx+cos3xdx.

Using Euler's identity, this integral becomes

126+e2ix+e2ixeix+eix+e3ix+e3ixdx.

If we now make the substitution u=eix, the result is the integral of a rational function:

i21+6u2+u41+u2+u4+u6du.

One may proceed using partial fraction decomposition.

See also

Template:Portal

References

Template:Reflist Template:Integrals