List of mathematical constants

From testwiki
Jump to navigation Jump to search

Template:Short description Template:Pp-pc A mathematical constant is a key number whose value is fixed by an unambiguous definition, often referred to by a symbol (e.g., an alphabet letter), or by mathematicians' names to facilitate using it across multiple mathematical problems.[1] For example, the constant Ο€ may be defined as the ratio of the length of a circle's circumference to its diameter. The following list includes a decimal expansion and set containing each number, ordered by year of discovery.

The column headings may be clicked to sort the table alphabetically, by decimal value, or by set. Explanations of the symbols in the right hand column can be found by clicking on them.

List

Template:Sort under

Mathematical constants sorted by their representations as continued fractions

The following list includes the continued fractions of some constants and is sorted by their representations. Continued fractions with more than 20 known terms have been truncated, with an ellipsis to show that they continue. Rational numbers have two continued fractions; the version in this list is the shorter one. Decimal representations are rounded or padded to 10 places if the values are known.

Name Symbol Set Decimal expansion Continued fraction Notes
Zero 0 β„€ 0.00000 00000 [0; ]
Golomb–Dickman constant λ 0.62432 99885 [0; 1, 1, 1, 1, 1, 22, 1, 2, 3, 1, 1, 11, 1, 1, 2, 22, 2, 6, 1, 1, …][OEIS 95] E. Weisstein noted that the continued fraction has an unusually large number of 1s.[Mw 79]
Cahen's constant C2 ℝ𝔸 0.64341 05463 [0; 1, 1, 1, 22, 32, 132, 1292, 252982, 4209841472, 2694251407415154862, …][OEIS 96] All terms are squares and truncated at 10 terms due to large size. Davison and Shallit used the continued fraction expansion to prove that the constant is transcendental.
Euler–Mascheroni constant γ 0.57721 56649Template:Sfn [0; 1, 1, 2, 1, 2, 1, 4, 3, 13, 5, 1, 1, 8, 1, 2, 4, 1, 1, 40, 1, …] Template:Sfn[OEIS 97] Using the continued fraction expansion, it was shown that if Template:Math is rational, its denominator must exceed 10244663.
First continued fraction constant C1 ℝ𝔸 0.69777 46579 [0; 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, …] Equal to the ratio I1(2)/I0(2) of modified Bessel functions of the first kind evaluated at 2.
Catalan's constant G 0.91596 55942Template:Sfn [0; 1, 10, 1, 8, 1, 88, 4, 1, 1, 7, 22, 1, 2, 3, 26, 1, 11, 1, 10, 1, …] Template:Sfn[OEIS 98] Computed up to Template:Val terms by E. Weisstein.[Mw 80]
One half Template:Sfrac β„š 0.50000 00000 [0; 2]
Prouhet–Thue–Morse constant τ ℝ𝔸 0.41245 40336 [0; 2, 2, 2, 1, 4, 3, 5, 2, 1, 4, 2, 1, 5, 44, 1, 4, 1, 2, 4, 1, …][OEIS 99] Infinitely many partial quotients are 4 or 5, and infinitely many partial quotients are greater than or equal to 50.[108]
Copeland–ErdΕ‘s constant π’žCE β„β„š 0.23571 11317 [0; 4, 4, 8, 16, 18, 5, 1, 1, 1, 1, 7, 1, 1, 6, 2, 9, 58, 1, 3, 4, …][OEIS 100] Computed up to Template:Val terms by E. Weisstein. He also noted that while the Champernowne constant continued fraction contains sporadic large terms, the continued fraction of the Copeland–ErdΕ‘s Constant do not exhibit this property.[Mw 81]
Base 10 Champernowne constant C10 ℝ𝔸 0.12345 67891 [0; 8, 9, 1, 149083, 1, 1, 1, 4, 1, 1, 1, 3, 4, 1, 1, 1, 15, Template:Val, 6, 1, …] [OEIS 101] Champernowne constants in any base exhibit sporadic large numbers; the 40th term in C10 has 2504 digits.
One 1 β„• 1.00000 00000 [1; ]
Phi, Golden ratio φ 𝔸 1.61803 39887Template:Sfn [1; 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, …] Template:Sfn The convergents are ratios of successive Fibonacci numbers.
Brun's constant B2 1.90216 05831 [1; 1, 9, 4, 1, 1, 8, 3, 4, 7, 1, 3, 3, 1, 2, 1, 1, 12, 4, 2, 1, …] The nth roots of the denominators of the nth convergents are close to Khinchin's constant, suggesting that B2 is irrational. If true, this will prove the twin prime conjecture.[109]
Square root of 2 2 𝔸 1.41421 35624 [1; 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, …] The convergents are ratios of successive Pell numbers.
Two 2 β„• 2.00000 00000 [2; ]
Euler's number e ℝ𝔸 2.71828 18285Template:Sfn [2; 1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 8, 1, 1, 10, 1, 1, 12, 1, 1, 14, …] Template:Sfn[OEIS 102] The continued fraction expansion has the pattern [2; 1, 2, 1, 1, 4, 1, ..., 1, 2n, 1, ...].
Khinchin's constant K0 2.68545 20011Template:Sfn [2; 1, 2, 5, 1, 1, 2, 1, 1, 3, 10, 2, 1, 3, 2, 24, 1, 3, 2, 3, 1, …] Template:Sfn[OEIS 103] For almost all real numbers x, the coefficients of the continued fraction of x have a finite geometric mean known as Khinchin's constant.
Three 3 β„• 3.00000 00000 [3; ]
Pi π ℝ𝔸 3.14159 26536 [3; 7, 15, 1, 292, 1, 1, 1, 2, 1, 3, 1, 14, 2, 1, 1, 2, 2, 2, 2, 1, …] [OEIS 104] The first few convergents (3, 22/7, 333/106, 355/113, ...) are among the best-known and most widely used historical approximations of Template:Math.

Sequences of constants

Name Symbol Formula Year Set
Harmonic number Hn k=1n1k Antiquity β„š
Gregory coefficients Gn 1n!01x(x1)(x2)(xn+1)dx=01(xn)dx 1670 β„š
Bernoulli number Bn± t2(cotht2±1)=m=0Bm±tmm! 1689 β„š
Hermite constants[Mw 82] γn For a lattice L in Euclidean space Rn with unit covolume, i.e. vol(Rn/L) = 1, let Ξ»Template:Sub(L) denote the least length of a nonzero element of L. Then √γTemplate:Subscriptn is the maximum of Ξ»Template:Sub(L) over all such lattices L. 1822 to 1901 ℝ
Hafner–Sarnak–McCurley constant[110] D(n) D(n)=k=1{1[1j=1n(1pkj)]2} 1883[Mw 83] ℝ
Stieltjes constants γn (1)nn!2π02πenixζ(eix+1)dx. before 1894 ℝ
Favard constants[48][Mw 84] Kr 4πn=0((1)n2n+1)r+1=4π((1)0(r+1)1r+(1)1(r+1)3r+(1)2(r+1)5r+(1)3(r+1)7r+) 1902 to 1965 ℝ
Generalized Brun's Constant[56] Bn p(1p+1p+n)where the sum ranges over all primes p such that p + n is also a prime 1919[OEIS 45] ℝ
Champernowne constants[67] Cb Defined by concatenating representations of successive integers in base b.

Cb=n=1nb(k=1nlogb(k+1))

1933 ℝ𝔸
Lagrange number L(n) 94mn2 where mn is the nth smallest number such that m2+x2+y2=3mxy has positive (x,y). before 1957 𝔸
Feller's coin-tossing constants αk,βk αk is the smallest positive real root of xk+1=2k+1(x1),βk=2αkk+1kαk 1968 𝔸
Stoneham number αb,c n=ck>11bnn=k=11bckck where b,c are coprime integers. 1973 ℝ𝔸
Beraha constants B(n) 2+2cos(2πn) 1974 𝔸
ChvΓ‘tal–Sankoff constants γk limnE[λn,k]n 1975 ℝ
Hyperharmonic number Hn(r) k=1nHk(r1) and Hn(0)=1n 1995 β„š
Gregory number Gx n=0(1)n1(2n+1)x2n+1=arccot(x) for rational x greater than or equal to one. before 1996 ℝ𝔸
Metallic mean n+n2+42 before 1998 𝔸

See also

Notes

Template:Reflist Template:Reflist

References

Template:Reflist

Site MathWorld Wolfram.com

Template:Reflist

Site OEIS.org

Template:Reflist

Site OEIS Wiki

Template:Reflist

Bibliography

Template:Refbegin

Template:Refend

Further reading

Template:Mathematical symbols notation language

  1. ↑ Template:Cite web
  2. ↑ 2.0 2.1 Template:Harvnb
  3. ↑ Template:Cite web
  4. ↑ Template:Cite book
  5. ↑ Fowler and Robson, p. 368. Photograph, illustration, and description of the root(2) tablet from the Yale Babylonian Collection Template:Webarchive High resolution photographs, descriptions, and analysis of the root(2) tablet (YBC 7289) from the Yale Babylonian Collection
  6. ↑ Template:Cite book
  7. ↑ Template:Cite book
  8. ↑ Template:Cite book
  9. ↑ Template:Citation.
  10. ↑ Kim Plofker (2009), Mathematics in India, Princeton University Press, Template:ISBN, pp. 54–56.
  11. ↑ Template:Cite book
  12. ↑ Template:Citation
  13. ↑ Template:Cite book
  14. ↑ Template:Cite book
  15. ↑ Template:Cite book
  16. ↑ Template:Cite book
  17. ↑ Template:Cite arXiv
  18. ↑ Template:Cite book
  19. ↑ Template:Cite web
  20. ↑ Template:Cite book
  21. ↑ Template:Cite book
  22. ↑ Template:Cite web
  23. ↑ Template:Cite book
  24. ↑ Template:Cite arXiv
  25. ↑ Template:Cite book
  26. ↑ Template:Cite book
  27. ↑ Template:Cite book
  28. ↑ Template:Cite book
  29. ↑ Template:Cite book
  30. ↑ Template:Cite book
  31. ↑ Template:Cite book
  32. ↑ Template:Cite book
  33. ↑ Template:Cite book
  34. ↑ Template:Cite web
  35. ↑ Template:Cite journal
  36. ↑ Template:Cite book
  37. ↑ Template:Cite book
  38. ↑ Template:Cite book
  39. ↑ Template:Cite book
  40. ↑ Template:Cite book
  41. ↑ Template:Cite book
  42. ↑ Template:Cite book
  43. ↑ Template:Cite book
  44. ↑ Template:Cite book
  45. ↑ Template:Cite book
  46. ↑ Template:Cite book
  47. ↑ Template:Cite book
  48. ↑ 48.0 48.1 Template:Cite book
  49. ↑ Template:Cite book
  50. ↑ Template:Cite book
  51. ↑ Template:Cite book
  52. ↑ Template:Cite book
  53. ↑ Template:Cite book
  54. ↑ Template:Cite book
  55. ↑ Template:Cite journal
  56. ↑ 56.0 56.1 Template:Cite book
  57. ↑ Template:Cite book
  58. ↑ 58.0 58.1 58.2 Template:Cite book
  59. ↑ Template:Citation
  60. ↑ Template:Cite web
  61. ↑ Template:Citation
  62. ↑ Template:Cite journal
  63. ↑ Template:Cite book
  64. ↑ Template:Cite book
  65. ↑ Template:Cite journal
  66. ↑ Template:Cite book
  67. ↑ 67.0 67.1 Template:Cite book
  68. ↑ Template:Cite book
  69. ↑ Template:Cite book
  70. ↑ Template:Cite book
  71. ↑ Template:Cite journal
  72. ↑ Template:Cite book
  73. ↑ Template:Cite book
  74. ↑ Template:Cite book
  75. ↑ 75.0 75.1 Template:Cite book
  76. ↑ Template:Cite journal
  77. ↑ Template:Cite book
  78. ↑ Template:Cite book
  79. ↑ Template:Cite book
  80. ↑ Template:Cite book
  81. ↑ Template:Cite book
  82. ↑ 82.0 82.1 82.2 Template:Cite book
  83. ↑ Template:Cite book
  84. ↑ Template:Cite book
  85. ↑ Template:Cite book
  86. ↑ Template:Cite book
  87. ↑ Template:Cite book
  88. ↑ Template:Cite book
  89. ↑ Template:Cite book
  90. ↑ Waldschmidt, M. "Nombres transcendants et fonctions sigma de Weierstrass." C. R. Math. Rep. Acad. Sci. Canada 1, 111-114, 1978/79.
  91. ↑ Template:Cite book
  92. ↑ Template:Cite book
  93. ↑ Template:Cite book
  94. ↑ Template:Cite book
  95. ↑ Template:Cite book
  96. ↑ Template:Cite book
  97. ↑ Template:Cite book
  98. ↑ Template:Cite book
  99. ↑ Template:Cite book
  100. ↑ Template:Cite book
  101. ↑ Template:Cite arXiv
  102. ↑ Template:Cite book
  103. ↑ Template:Cite book
  104. ↑ Template:Cite journal
  105. ↑ Template:Cite book
  106. ↑ Template:Cite book
  107. ↑ Template:Cite journal
  108. ↑ Template:Cite journal
  109. ↑ Template:Cite arXiv
  110. ↑ Template:Cite book


Cite error: <ref> tags exist for a group named "Mw", but no corresponding <references group="Mw"/> tag was found
Cite error: <ref> tags exist for a group named "OEIS", but no corresponding <references group="OEIS"/> tag was found
Cite error: <ref> tags exist for a group named "Ow", but no corresponding <references group="Ow"/> tag was found