Particular values of the Riemann zeta function

From testwiki
Jump to navigation Jump to search

Template:Short description Template:Use American English In mathematics, the Riemann zeta function is a function in complex analysis, which is also important in number theory. It is often denoted ζ(s) and is named after the mathematician Bernhard Riemann. When the argument s is a real number greater than one, the zeta function satisfies the equation ζ(s)=n=11ns. It can therefore provide the sum of various convergent infinite series, such as ζ(2)=112+122+132+. Explicit or numerically efficient formulae exist for ζ(s) at integer arguments, all of which have real values, including this example. This article lists these formulae, together with tables of values. It also includes derivatives and some series composed of the zeta function at integer arguments.

The same equation in s above also holds when s is a complex number whose real part is greater than one, ensuring that the infinite sum still converges. The zeta function can then be extended to the whole of the complex plane by analytic continuation, except for a simple pole at s=1. The complex derivative exists in this more general region, making the zeta function a meromorphic function. The above equation no longer applies for these extended values of s, for which the corresponding summation would diverge. For example, the full zeta function exists at s=1 (and is therefore finite there), but the corresponding series would be 1+2+3+, whose partial sums would grow indefinitely large.

The zeta function values listed below include function values at the negative even numbers (Template:Math, Template:Nowrap), for which Template:Math and which make up the so-called trivial zeros. The Riemann zeta function article includes a colour plot illustrating how the function varies over a continuous rectangular region of the complex plane. The successful characterisation of its non-trivial zeros in the wider plane is important in number theory, because of the Riemann hypothesis.

The Riemann zeta function at 0 and 1

At zero, one has ζ(0)=B1=B1+=12

At 1 there is a pole, so ζ(1) is not finite but the left and right limits are: limε0±ζ(1+ε)=± Since it is a pole of first order, it has a complex residue limε0εζ(1+ε)=1.

Positive integers

Even positive integers

For the even positive integers n, one has the relationship to the Bernoulli numbers Bn:

ζ(n)=(1)n2+1(2π)nBn2(n!).

The computation of ζ(2) is known as the Basel problem. The value of ζ(4) is related to the Stefan–Boltzmann law and Wien approximation in physics. The first few values are given by: ζ(2)=1+122+132+=π26ζ(4)=1+124+134+=π490ζ(6)=1+126+136+=π6945ζ(8)=1+128+138+=π89450ζ(10)=1+1210+1310+=π1093555ζ(12)=1+1212+1312+=691π12638512875ζ(14)=1+1214+1314+=2π1418243225ζ(16)=1+1216+1316+=3617π16325641566250.

Taking the limit n, one obtains ζ()=1.

Selected values for even integers
Value Decimal expansion Source
ζ(2) Template:Val... Template:OEIS2C
ζ(4) Template:Val... Template:OEIS2C
ζ(6) Template:Val... Template:OEIS2C
ζ(8) Template:Val... Template:OEIS2C
ζ(10) Template:Val... Template:OEIS2C
ζ(12) Template:Val... Template:OEIS2C
ζ(14) Template:Val... Template:OEIS2C
ζ(16) Template:Val... Template:OEIS2C

The relationship between zeta at the positive even integers and powers of pi may be written as

anζ(2n)=π2nbn

where an and bn are coprime positive integers for all n. These are given by the integer sequences Template:OEIS2C and Template:OEIS2C, respectively, in OEIS. Some of these values are reproduced below:

coefficients
n an bn
1 6 1
2 90 1
3 945 1
4 9450 1
5 93555 1
6 638512875 691
7 18243225 2
8 325641566250 3617
9 38979295480125 43867
10 1531329465290625 174611
11 13447856940643125 155366
12 201919571963756521875 236364091
13 11094481976030578125 1315862
14 564653660170076273671875 6785560294
15 5660878804669082674070015625 6892673020804
16 62490220571022341207266406250 7709321041217
17 12130454581433748587292890625 151628697551

If we let ηn=bn/an be the coefficient of π2n as above, ζ(2n)==112n=ηnπ2n then we find recursively,

η1=1/6ηn==1n1(1)1ηn(2+1)!+(1)n+1n(2n+1)!

This recurrence relation may be derived from that for the Bernoulli numbers.

Also, there is another recurrence:

ζ(2n)=1n+12k=1n1ζ(2k)ζ(2n2k) for n>1 which can be proved, using that ddxcot(x)=1cot2(x)

The values of the zeta function at non-negative even integers have the generating function: n=0ζ(2n)x2n=πx2cot(πx)=12+π26x2+π490x4+π6945x6+ Since limnζ(2n)=1 The formula also shows that for n,n, |B2n|(2n)!2(2π)2n

Odd positive integers

The sum of the harmonic series is infinite. ζ(1)=1+12+13+=

The value Template:Math is also known as Apéry's constant and has a role in the electron's gyromagnetic ratio. The value Template:Math also appears in Planck's law. These and additional values are:

Selected values for odd integers
Value Decimal expansion Source
ζ(3) Template:Val... Template:OEIS2C
ζ(5) Template:Val... Template:OEIS2C
ζ(7) Template:Val... Template:OEIS2C
ζ(9) Template:Val... Template:OEIS2C
ζ(11) Template:Val... Template:OEIS2C
ζ(13) Template:Val... Template:OEIS2C
ζ(15) Template:Val... Template:OEIS2C

It is known that Template:Math is irrational (Apéry's theorem) and that infinitely many of the numbers Template:Math, are irrational.[1] There are also results on the irrationality of values of the Riemann zeta function at the elements of certain subsets of the positive odd integers; for example, at least one of Template:Math is irrational.[2]

The positive odd integers of the zeta function appear in physics, specifically correlation functions of antiferromagnetic XXX spin chain.[3]

Most of the identities following below are provided by Simon Plouffe. They are notable in that they converge quite rapidly, giving almost three digits of precision per iteration, and are thus useful for high-precision calculations.

Plouffe stated the following identities without proof.[4] Proofs were later given by other authors.[5]

ζ(5)

ζ(5)=1294π57235n=11n5(e2πn1)235n=11n5(e2πn+1)ζ(5)=12n=11n5sinh(πn)3920n=11n5(e2πn1)+120n=11n5(e2πn+1)

ζ(7)

ζ(7)=1956700π72n=11n7(e2πn1)

Note that the sum is in the form of a Lambert series.

ζ(2n + 1)

By defining the quantities

S±(s)=n=11ns(e2πn±1)

a series of relationships can be given in the form

0=anζ(n)bnπn+cnS(n)+dnS+(n)

where an, bn, cn and dn are positive integers. Plouffe gives a table of values:

coefficients
n an bn cn dn
3 180 7 360 0
5 1470 5 3024 84
7 56700 19 113400 0
9 18523890 625 37122624 74844
11 425675250 1453 851350500 0
13 257432175 89 514926720 62370
15 390769879500 13687 781539759000 0
17 1904417007743250 6758333 3808863131673600 29116187100
19 21438612514068750 7708537 42877225028137500 0
21 1881063815762259253125 68529640373 3762129424572110592000 1793047592085750

These integer constants may be expressed as sums over Bernoulli numbers, as given in (Vepstas, 2006) below.

A fast algorithm for the calculation of Riemann's zeta function for any integer argument is given by E. A. Karatsuba.[6][7][8]

Negative integers

In general, for negative integers (and also zero), one has

ζ(n)=(1)nBn+1n+1

The so-called "trivial zeros" occur at the negative even integers:

ζ(2n)=0 (Ramanujan summation)

The first few values for negative odd integers are

ζ(1)=112ζ(3)=1120ζ(5)=1252ζ(7)=1240ζ(9)=1132ζ(11)=69132760ζ(13)=112

However, just like the Bernoulli numbers, these do not stay small for increasingly negative odd values. For details on the first value, see 1 + 2 + 3 + 4 + · · ·.

So ζ(m) can be used as the definition of all (including those for index 0 and 1) Bernoulli numbers.

Derivatives

The derivative of the zeta function at the negative even integers is given by

ζ(2n)=(1)n(2n)!2(2π)2nζ(2n+1).

The first few values of which are

ζ(2)=ζ(3)4π2ζ(4)=34π4ζ(5)ζ(6)=458π6ζ(7)ζ(8)=3154π8ζ(9).

One also has

ζ(0)=12ln(2π)ζ(1)=112lnAζ(2)=16π2(γ+ln212lnA+lnπ)

where A is the Glaisher–Kinkelin constant. The first of these identities implies that the regularized product of the reciprocals of the positive integers is 1/2π, thus the amusing "equation" !=2π.[9]

From the logarithmic derivative of the functional equation,

2ζ(1/2)ζ(1/2)=log(2π)+πcos(π/4)2sin(π/4)Γ(1/2)Γ(1/2)=log(2π)+π2+2log2+γ.

Selected derivatives
Value Decimal expansion Source
ζ(3) Template:Val... Template:OEIS2C
ζ(2) Template:Val... Template:OEIS2C
ζ(0) Template:Val... Template:OEIS2C
ζ(12) Template:Val... Template:OEIS2C
ζ(1) Template:Val... Template:OEIS2C
ζ(2) Template:Val... Template:OEIS2C
ζ(3) Template:Val... Template:OEIS2C
ζ(4) Template:Val... Template:OEIS2C
ζ(5) Template:Val... Template:OEIS2C
ζ(6) Template:Val... Template:OEIS2C
ζ(7) Template:Val... Template:OEIS2C
ζ(8) Template:Val... Template:OEIS2C

Series involving ζ(n)

The following sums can be derived from the generating function: k=2ζ(k)xk1=ψ0(1x)γ where Template:Math is the digamma function.

k=2(ζ(k)1)=1k=1(ζ(2k)1)=34k=1(ζ(2k+1)1)=14k=2(1)k(ζ(k)1)=12

Series related to the Euler–Mascheroni constant (denoted by Template:Math) are k=2(1)kζ(k)k=γk=2ζ(k)1k=1γk=2(1)kζ(k)1k=ln2+γ1

and using the principal value ζ(k)=limε0ζ(k+ε)+ζ(kε)2 which of course affects only the value at 1, these formulae can be stated as

k=1(1)kζ(k)k=0k=1ζ(k)1k=0k=1(1)kζ(k)1k=ln2

and show that they depend on the principal value of Template:Nowrap

Nontrivial zeros

Template:Main

Zeros of the Riemann zeta except negative even integers are called "nontrivial zeros". The Riemann hypothesis states that the real part of every nontrivial zero must be Template:Sfrac. In other words, all known nontrivial zeros of the Riemann zeta are of the form Template:Math where y is a real number. The following table contains the decimal expansion of Im(z) for the first few nontrivial zeros:

Selected nontrivial zeros
Decimal expansion of Im(z) Source
Template:Val... Template:OEIS2C
Template:Val... Template:OEIS2C
Template:Val... Template:OEIS2C
Template:Val... Template:OEIS2C
Template:Val... Template:OEIS2C
Template:Val... Template:OEIS2C
Template:Val... Template:OEIS2C
Template:Val... Template:OEIS2C
Template:Val... Template:OEIS2C
Template:Val... Template:OEIS2C

Andrew Odlyzko computed the first 2 million nontrivial zeros accurate to within 4Template:X10^, and the first 100 zeros accurate within 1000 decimal places. See their website for the tables and bibliographies.[10][11] A table of about 103 billion zeros with high precision (of ±2−102≈±2·10−31) is available for interactive access and download (although in a very inconvenient compressed format) via LMFDB.[12]

Ratios

Although evaluating particular values of the zeta function is difficult, often certain ratios can be found by inserting particular values of the gamma function into the functional equation

ζ(s)=2sπs1sin(πs2)Γ(1s)ζ(1s)

We have simple relations for half-integer arguments

ζ(3/2)ζ(1/2)=4πζ(5/2)ζ(3/2)=16π23ζ(7/2)ζ(5/2)=64π315ζ(9/2)ζ(7/2)=256π4105

Other examples follow for more complicated evaluations and relations of the gamma function. For example a consequence of the relation

Γ(34)=(π2)14AGM(2,1)12

is the zeta ratio relation

ζ(3/4)ζ(1/4)=2π(22)AGM(2,1)

where AGM is the arithmetic–geometric mean. In a similar vein, it is possible to form radical relations, such as from

Γ(15)2Γ(110)Γ(310)=1+5271054

the analogous zeta relation is

ζ(1/5)2ζ(7/10)ζ(9/10)ζ(1/10)ζ(3/10)ζ(4/5)2=(55)(10+5+5)102310

References

Template:Reflist

Further reading

  1. Template:Cite journal
  2. Template:Cite journal
  3. Template:Cite journal.
  4. Template:Cite web
  5. Template:Cite web
  6. Template:Cite journal
  7. E. A. Karatsuba: Fast computation of the Riemann zeta function for integer argument. Dokl. Math. Vol.54, No.1, p. 626 (1996).
  8. E. A. Karatsuba: Fast evaluation of ζ(3). Probl. Inf. Transm. Vol.29, No.1, pp. 58–62 (1993).
  9. Template:Citation.
  10. Template:Cite web
  11. Template:Cite web
  12. LMFDB: Zeros of ζ(s)