Integral of secant cubed

From testwiki
Jump to navigation Jump to search

Template:Short description {{#invoke:sidebar|collapsible | class = plainlist | titlestyle = padding-bottom:0.25em; | pretitle = Part of a series of articles about | title = Calculus | image = abf(t)dt=f(b)f(a) | listtitlestyle = text-align:center; | liststyle = border-top:1px solid #aaa;padding-top:0.15em;border-bottom:1px solid #aaa; | expanded = integral | abovestyle = padding:0.15em 0.25em 0.3em;font-weight:normal; | above =

Template:Startflatlist

Template:EndflatlistTemplate:Startflatlist

Template:Endflatlist

| list2name = differential | list2titlestyle = display:block;margin-top:0.65em; | list2title = Template:Bigger | list2 ={{#invoke:sidebar|sidebar|child=yes

 |contentclass=hlist
 | heading1 = Definitions
 | content1 =
 | heading2 = Concepts
 | content2 =
 | heading3 = Rules and identities
 | content3 =
}}

| list3name = integral | list3title = Template:Bigger | list3 ={{#invoke:sidebar|sidebar|child=yes

 |contentclass=hlist
 | content1 =

| heading2 = Definitions

 | content2 =
 | heading3 = Integration by
 | content3 =
}}

| list4name = series | list4title = Template:Bigger | list4 ={{#invoke:sidebar|sidebar|child=yes

 |contentclass=hlist
 | content1 =
 | heading2 = Convergence tests
 | content2 =
}}

| list5name = vector | list5title = Template:Bigger | list5 ={{#invoke:sidebar|sidebar|child=yes

 |contentclass=hlist
 | content1 =
 | heading2 = Theorems
 | content2 =
}}

| list6name = multivariable | list6title = Template:Bigger | list6 ={{#invoke:sidebar|sidebar|child=yes

 |contentclass=hlist
 | heading1 = Formalisms
 | content1 =
 | heading2 = Definitions
 | content2 =
}}

| list7name = advanced | list7title = Template:Bigger | list7 ={{#invoke:sidebar|sidebar|child=yes

 |contentclass=hlist
 | content1 =
}}

| list8name = specialized | list8title = Template:Bigger | list8 =

| list9name = miscellanea | list9title = Template:Bigger | list9 =

}}

The integral of secant cubed is a frequent and challenging[1] indefinite integral of elementary calculus:

sec3xdx=12secxtanx+12secxdx+C=12(secxtanx+ln|secx+tanx|)+C=12(secxtanx+gd1x)+C,|x|<12π

where gd1 is the inverse Gudermannian function, the integral of the secant function.

There are a number of reasons why this particular antiderivative is worthy of special attention:

  • The technique used for reducing integrals of higher odd powers of secant to lower ones is fully present in this, the simplest case. The other cases are done in the same way.
  • The utility of hyperbolic functions in integration can be demonstrated in cases of odd powers of secant (powers of tangent can also be included).
  • This is one of several integrals usually done in a first-year calculus course in which the most natural way to proceed involves integrating by parts and returning to the same integral one started with (another is the integral of the product of an exponential function with a sine or cosine function; yet another the integral of a power of the sine or cosine function).
  • This integral is used in evaluating any integral of the form
a2+x2dx,
where a is a constant. In particular, it appears in the problems of:

Derivations

Integration by parts

This antiderivative may be found by integration by parts, as follows:[2]

sec3xdx=udv=uvvdu

where

u=secx,dv=sec2xdx,v=tanx,du=secxtanxdx.

Then

sec3xdx=(secx)(sec2x)dx=secxtanxtanx(secxtanx)dx=secxtanxsecxtan2xdx=secxtanxsecx(sec2x1)dx=secxtanx(sec3xdxsecxdx)=secxtanxsec3xdx+secxdx.

Next add sec3xdx to both sides:Template:Efn

2sec3xdx=secxtanx+secxdx=secxtanx+ln|secx+tanx|+C,

using the integral of the secant function, secxdx=ln|secx+tanx|+C.[2]

Finally, divide both sides by 2:

sec3xdx=12(secxtanx+ln|secx+tanx|)+C,

which was to be derived.[2] A possible mnemonic is: "The integral of secant cubed is the average of the derivative and integral of secant".

Reduction to an integral of a rational function

sec3xdx=dxcos3x=cosxdxcos4x=cosxdx(1sin2x)2=du(1u2)2

where u=sinx, so that du=cosxdx. This admits a decomposition by partial fractions:

1(1u2)2=1(1+u)2(1u)2=14(1+u)+14(1+u)2+14(1u)+14(1u)2.

Antidifferentiating term-by-term, one gets

sec3xdx=14ln|1+u|14(1+u)14ln|1u|+14(1u)+C=14ln|1+u1u|+u2(1u2)+C=14ln|1+sinx1sinx|+sinx2cos2x+C=14ln|1+sinx1sinx|+12secxtanx+C=14ln|(1+sinx)21sin2x|+12secxtanx+C=14ln|(1+sinx)2cos2x|+12secxtanx+C=12ln|1+sinxcosx|+12secxtanx+C=12(ln|secx+tanx|+secxtanx)+C.

Alternatively, one may use the tangent half-angle substitution for any rational function of trigonometric functions; for this particular integrand, that method leads to the integration of

2(1+u2)2(1u2)3=12(1+u)12(1+u)2+1(1+u)3+12(1u)12(1u)2+1(1u)3.

Hyperbolic functions

Integrals of the form: secnxtanmxdx can be reduced using the Pythagorean identity if n is even or n and m are both odd. If n is odd and m is even, hyperbolic substitutions can be used to replace the nested integration by parts with hyperbolic power-reducing formulas.

secx=coshutanx=sinhusec2xdx=coshudu or secxtanxdx=sinhudusecxdx=du or dx=sechuduu=arcosh(secx)=arsinh(tanx)=ln|secx+tanx|

Note that secxdx=ln|secx+tanx| follows directly from this substitution.

sec3xdx=cosh2udu=12(cosh2u+1)du=12(12sinh2u+u)+C=12(sinhucoshu+u)+C=12(secxtanx+ln|secx+tanx|)+C

Higher odd powers of secant

Just as the integration by parts above reduced the integral of secant cubed to the integral of secant to the first power, so a similar process reduces the integral of higher odd powers of secant to lower ones. This is the secant reduction formula, which follows the syntax:

secnxdx=secn2xtanxn1+n2n1secn2xdx (for n1)

Even powers of tangents can be accommodated by using binomial expansion to form an odd polynomial of secant and using these formulae on the largest term and combining like terms.

See also

Notes

Template:Notelist

References

Template:Reflist

Template:Calculus topics