700 (number)

From testwiki
Jump to navigation Jump to search

Template:Hatnote Template:Infobox number 700 (seven hundred) is the natural number following 699 and preceding 701.

It is the sum of four consecutive primes (167 + 173 + 179 + 181), the perimeter of a Pythagorean triangle (75 + 308 + 317)[1] and a Harshad number.

Integers from 701 to 799

Nearly all of the palindromic integers between 700 and 800 (i.e. nearly all numbers in this range that have both the hundreds and units digit be 7) are used as model numbers for Boeing Commercial Airplanes.

700s

710s

720s

Template:Main

730s

  • 730 = 2 × 5 × 73, sphenic number, nontotient, Harshad number, number of generalized weak orders on 5 points [30]
  • 731 = 17 × 43, sum of three consecutive primes (239 + 241 + 251), number of Euler trees with total weight 7 [31]
  • 732 = 22 × 3 × 61, sum of eight consecutive primes (73 + 79 + 83 + 89 + 97 + 101 + 103 + 107), sum of ten consecutive primes (53 + 59 + 61 + 67 + 71 + 73 + 79 + 83 + 89 + 97), Harshad number, number of collections of subsets of {1, 2, 3, 4} that are closed under union and intersection [32]
  • 733 = prime number, emirp, balanced prime,[33] permutable prime, sum of five consecutive primes (137 + 139 + 149 + 151 + 157)
  • 734 = 2 × 367, nontotient, number of traceable graphs on 7 nodes [34]
  • 735 = 3 × 5 × 72, Harshad number, Zuckerman number, smallest number such that uses same digits as its distinct prime factors
  • 736 = 25 × 23, centered heptagonal number,[35] happy number, nice Friedman number since 736 = 7 + 36, Harshad number
  • 737 = 11 × 67, palindromic number, blum integer.
  • 738 = 2 × 32 × 41, Harshad number.
  • 739 = prime number, strictly non-palindromic number,[36] lucky prime,[25] happy number, prime index prime

740s

  • 740 = 22 × 5 × 37, nontotient, number of connected squarefree graphs on 9 nodes [37]
  • 741 = 3 × 13 × 19, sphenic number, 38th triangular number[3]
  • 742 = 2 × 7 × 53, sphenic number, decagonal number,[38] icosahedral number. It is the smallest number that is one more than triple its reverse. Lazy caterer number Template:OEIS. Number of partitions of 30 into divisors of 30.[39]
  • 743 = prime number, Sophie Germain prime, Chen prime, Eisenstein prime with no imaginary part
  • 744 = 23 × 3 × 31, sum of four consecutive primes (179 + 181 + 191 + 193). It is the coefficient of the first degree term of the expansion of Klein's j-invariant, and the zeroth degree term of the Laurent series of the J-invariant. Furthermore, 744 = 3 × 248 where 248 is the dimension of the Lie algebra E8.
  • 745 = 5 × 149 = 24 + 36, number of non-connected simple labeled graphs covering 6 vertices[40]
  • 746 = 2 × 373 = 15 + 24 + 36 = 17 + 24 + 36, nontotient, number of non-normal semi-magic squares with sum of entries equal to 6[41]
  • 747 = 32 × 83 = 423323,[42] palindromic number.
  • 748 = 22 × 11 × 17, nontotient, happy number, primitive abundant number[43]
  • 749 = 7 × 107, sum of three consecutive primes (241 + 251 + 257), blum integer

750s

  • 750 = 2 × 3 × 53, enneagonal number.[44]
  • 751 = prime number, Chen prime, emirp
  • 752 = 24 × 47, nontotient, number of partitions of 11 into parts of 2 kinds[45]
  • 753 = 3 × 251, blum integer
  • 754 = 2 × 13 × 29, sphenic number, nontotient, totient sum for first 49 integers, number of different ways to divide a 10 × 10 square into sub-squares [46]
  • 755 = 5 × 151, number of vertices in a regular drawing of the complete bipartite graph K9,9.[47]
  • 756 = 22 × 33 × 7, sum of six consecutive primes (109 + 113 + 127 + 131 + 137 + 139), pronic number,[2] Harshad number
  • 757 = prime number, palindromic prime, sum of seven consecutive primes (97 + 101 + 103 + 107 + 109 + 113 + 127), happy number.
  • 758 = 2 × 379, nontotient, prime number of measurement [48]
  • 759 = 3 × 11 × 23, sphenic number, sum of five consecutive primes (139 + 149 + 151 + 157 + 163), a q-Fibonacci number for q=3 [49]

760s

770s

Template:Main

780s

  • 780 = 22 × 3 × 5 × 13, sum of four consecutive primes in a quadruplet (191, 193, 197, and 199); sum of ten consecutive primes (59 + 61 + 67 + 71 + 73 + 79 + 83 + 89 + 97 + 101), 39th triangular number,[3]a hexagonal number,[4] Harshad number
    • 780 and 990 are the fourth smallest pair of triangular numbers whose sum and difference (1770 and 210) are also triangular.
  • 781 = 11 × 71. 781 is the sum of powers of 5/repdigit in base 5 (11111), Mertens function(781) = 0, lazy caterer number Template:OEIS
  • 782 = 2 × 17 × 23, sphenic number, nontotient, pentagonal number,[13] Harshad number, also, 782 gear used by U.S. Marines
  • 783 = 33 × 29, heptagonal number
  • 784 = 24 × 72 = 282 = 13+23+33+43+53+63+73, the sum of the cubes of the first seven positive integers, happy number
  • 785 = 5 × 157, Mertens function(785) = 0, number of series-reduced planted trees with 6 leaves of 2 colors [67]

Template:Main

790s

References

Template:Reflist

Template:Integers Template:Authority control

  1. Template:Cite OEIS
  2. 2.0 2.1 Template:Cite web
  3. 3.0 3.1 3.2 Template:Cite web
  4. 4.0 4.1 Template:Cite web
  5. Template:Cite web
  6. 6.0 6.1 6.2 6.3 6.4 Template:Cite web
  7. Template:Cite OEIS
  8. Template:Cite OEIS
  9. Template:Cite journal
  10. Template:Cite OEIS
  11. Template:Cite OEIS
  12. Template:Cite OEIS
  13. 13.0 13.1 Template:Cite web
  14. Template:Cite web
  15. Template:Cite web
  16. 16.0 16.1 Template:Cite web
  17. Template:Cite web
  18. Template:Cite web
  19. Template:Cite OEIS
  20. Template:Cite OEIS
  21. Template:Cite OEIS
  22. Template:Cite OEIS
  23. Template:Cite OEIS
  24. Template:Cite web
  25. 25.0 25.1 25.2 25.3 Template:Cite web
  26. Template:Cite web
  27. Template:Cite OEIS
  28. Template:Cite web
  29. Template:Cite web
  30. Template:Cite OEIS
  31. Template:Cite OEIS
  32. Template:Cite OEIS
  33. Template:Cite web
  34. Template:Cite OEIS
  35. Template:Cite web
  36. Template:Cite web
  37. Template:Cite OEIS
  38. Template:Cite web
  39. Template:Cite OEIS
  40. Template:Cite OEIS
  41. Template:Cite OEIS
  42. Template:Cite OEIS
  43. Template:Cite web
  44. Template:Cite web
  45. Template:Cite OEIS
  46. Template:Cite OEIS
  47. Template:Cite OEIS
  48. Template:Cite OEIS
  49. Template:Cite OEIS
  50. Template:Cite web
  51. Template:Cite web
  52. Template:Cite OEIS
  53. Template:Cite OEIS
  54. Template:Cite web
  55. Template:Cite OEIS
  56. Template:Cite web
  57. Template:Cite OEIS
  58. Template:Cite web
  59. Template:Cite OEIS
  60. Template:Cite OEIS
  61. Template:Cite web
  62. Template:Cite web
  63. Template:OEIS
  64. Template:Cite web
  65. Template:Cite web
  66. Template:Cite web
  67. Template:Cite OEIS
  68. Template:Cite OEIS
  69. Template:Cite OEIS
  70. Template:Cite OEIS
  71. Template:Cite OEIS
  72. Template:Cite OEIS
  73. Template:Cite OEIS
  74. Template:Cite OEIS
  75. Template:Cite OEIS