Mertens function

From testwiki
Jump to navigation Jump to search

Template:Short description Template:More citations needed

File:Mertens.svg
Mertens function to n = Template:Val
File:Mertens-big.svg
Mertens function to n = Template:Val

In number theory, the Mertens function is defined for all positive integers n as

M(n)=k=1nμ(k),

where μ(k) is the Möbius function. The function is named in honour of Franz Mertens. This definition can be extended to positive real numbers as follows:

M(x)=M(x).

Less formally, M(x) is the count of square-free integers up to x that have an even number of prime factors, minus the count of those that have an odd number.

The first 143 M(n) values are Template:OEIS

M(n) +0 +1 +2 +3 +4 +5 +6 +7 +8 +9 +10 +11
0+ 1 0 −1 −1 −2 −1 −2 −2 −2 −1 −2
12+ −2 −3 −2 −1 −1 −2 −2 −3 −3 −2 −1 −2
24+ −2 −2 −1 −1 −1 −2 −3 −4 −4 −3 −2 −1
36+ −1 −2 −1 0 0 −1 −2 −3 −3 −3 −2 −3
48+ −3 −3 −3 −2 −2 −3 −3 −2 −2 −1 0 −1
60+ −1 −2 −1 −1 −1 0 −1 −2 −2 −1 −2 −3
72+ −3 −4 −3 −3 −3 −2 −3 −4 −4 −4 −3 −4
84+ −4 −3 −2 −1 −1 −2 −2 −1 −1 0 1 2
96+ 2 1 1 1 1 0 −1 −2 −2 −3 −2 −3
108+ −3 −4 −5 −4 −4 −5 −6 −5 −5 −5 −4 −3
120+ −3 −3 −2 −1 −1 −1 −1 −2 −2 −1 −2 −3
132+ −3 −2 −1 −1 −1 −2 −3 −4 −4 −3 −2 −1

The Mertens function slowly grows in positive and negative directions both on average and in peak value, oscillating in an apparently chaotic manner passing through zero when n has the values

2, 39, 40, 58, 65, 93, 101, 145, 149, 150, 159, 160, 163, 164, 166, 214, 231, 232, 235, 236, 238, 254, 329, 331, 332, 333, 353, 355, 356, 358, 362, 363, 364, 366, 393, 401, 403, 404, 405, 407, 408, 413, 414, 419, 420, 422, 423, 424, 425, 427, 428, ... Template:OEIS.

Because the Möbius function only takes the values −1, 0, and +1, the Mertens function moves slowly, and there is no x such that |M(x)| > x. H. Davenport[1] demonstrated that, for any fixed h,

n=1xμ(n)exp(i2πnθ)=O(xloghx)

uniformly in θ. This implies, for θ=0 that

M(x)=O(xloghx) .


The Mertens conjecture went further, stating that there would be no x where the absolute value of the Mertens function exceeds the square root of x. The Mertens conjecture was proven false in 1985 by Andrew Odlyzko and Herman te Riele. However, the Riemann hypothesis is equivalent to a weaker conjecture on the growth of M(x), namely M(x) = O(x1/2 + ε). Since high values for M(x) grow at least as fast as x, this puts a rather tight bound on its rate of growth. Here, O refers to big O notation.

The true rate of growth of M(x) is not known. An unpublished conjecture of Steve Gonek states that

0<lim supx|M(x)|x(logloglogx)5/4<.

Probabilistic evidence towards this conjecture is given by Nathan Ng.[2] In particular, Ng gives a conditional proof that the function ey/2M(ey) has a limiting distribution ν on . That is, for all bounded Lipschitz continuous functions f on the reals we have that

limY1Y0Yf(ey/2M(ey))dy=f(x)dν(x),

if one assumes various conjectures about the Riemann zeta function.

Representations

As an integral

Using the Euler product, one finds that

1ζ(s)=p(1ps)=n=1μ(n)ns,

where ζ(s) is the Riemann zeta function, and the product is taken over primes. Then, using this Dirichlet series with Perron's formula, one obtains

12πicic+ixssζ(s)ds=M(x),

where c > 1.

Conversely, one has the Mellin transform

1ζ(s)=s1M(x)xs+1dx,

which holds for Re(s)>1.

A curious relation given by Mertens himself involving the second Chebyshev function is

ψ(x)=M(x2)log2+M(x3)log3+M(x4)log4+.

Assuming that the Riemann zeta function has no multiple non-trivial zeros, one has the "exact formula" by the residue theorem:

M(x)=ρxρρζ(ρ)2+n=1(1)n1(2π)2n(2n)!nζ(2n+1)x2n.

Weyl conjectured that the Mertens function satisfied the approximate functional-differential equation

y(x)2r=1NB2r(2r)!Dt2r1y(xt+1)+x0xy(u)u2du=x1H(logx),

where H(x) is the Heaviside step function, B are Bernoulli numbers, and all derivatives with respect to t are evaluated at t = 0.

There is also a trace formula involving a sum over the Möbius function and zeros of the Riemann zeta function in the form

n=1μ(n)ng(logn)=γh(γ)ζ(1/2+iγ)+2n=1(1)n(2π)2n(2n)!ζ(2n+1)g(x)ex(2n+1/2)dx,

where the first sum on the right-hand side is taken over the non-trivial zeros of the Riemann zeta function, and (gh) are related by the Fourier transform, such that

2πg(x)=h(u)eiuxdu.

As a sum over Farey sequences

Another formula for the Mertens function is

M(n)=1+ane2πia,

where n is the Farey sequence of order n.

This formula is used in the proof of the Franel–Landau theorem.[3]

As a determinant

M(n) is the determinant of the n × n Redheffer matrix, a (0, 1) matrix in which aij is 1 if either j is 1 or i divides j.

As a sum of the number of points under n-dimensional hyperboloids

M(x)=12ax1+a2b2abx1a2b2c2abcx1+a2b2c2d2abcdx1

This formulationTemplate:Citation needed expanding the Mertens function suggests asymptotic bounds obtained by considering the Piltz divisor problem, which generalizes the Dirichlet divisor problem of computing asymptotic estimates for the summatory function of the divisor function.

Other properties

From [4] we have

d=1nM(n/d)=1 .

Furthermore, from [5]

d=1nM(n/d)d=Φ(n) ,

where Φ(n) is the totient summatory function.

Calculation

Neither of the methods mentioned previously leads to practical algorithms to calculate the Mertens function. Using sieve methods similar to those used in prime counting, the Mertens function has been computed for all integers up to an increasing range of x.[6][7]

Person Year Limit
Mertens 1897 104
von Sterneck 1897 1.5Template:E
von Sterneck 1901 5Template:E
von Sterneck 1912 5Template:E
Neubauer 1963 108
Cohen and Dress 1979 7.8Template:E
Dress 1993 1012
Lioen and van de Lune 1994 1013
Kotnik and van de Lune 2003 1014
Hurst 2016 1016

The Mertens function for all integer values up to x may be computed in Template:Nobr time. A combinatorial algorithm has been developed incrementally starting in 1870 by Ernst Meissel,[8] Lehmer,[9] Lagarias-Miller-Odlyzko,[10] and Deléglise-Rivat[11] that computes isolated values of M(x) in Template:Nobr time; a further improvement by Harald Helfgott and Lola Thompson in 2021 improves this to Template:Nobr,[12] and an algorithm by Lagarias and Odlyzko based on integrals of the Riemann zeta function achieves a running time of Template:Nobr.[13]

See Template:OEIS2C for values of M(x) at powers of 10.

Known upper bounds

Ng notes that the Riemann hypothesis (RH) is equivalent to

M(x)=O(xexp(Clogxloglogx)),

for some positive constant C>0. Other upper bounds have been obtained by Maier, Montgomery, and Soundarajan assuming the RH including

|M(x)|xexp(C2(logx)3961)|M(x)|xexp(logx(loglogx)14).

Known explicit upper bounds without assuming the RH are given by:[14]

|M(x)|<12590292xlog236/75(x),  for x>exp(12282.3)|M(x)|<0.6437752xlogx,  for x>1.

It is possible to simplify the above expression into a less restrictive but illustrative form as:

M(x)=O(xlogπ(x)).


See also

Notes

Template:Reflist

References