Highly cototient number

From testwiki
Jump to navigation Jump to search

Template:Short description

In number theory, a branch of mathematics, a highly cototient number is a positive integer k which is above 1 and has more solutions to the equation

xϕ(x)=k

than any other integer below k and above 1. Here, ϕ is Euler's totient function. There are infinitely many solutions to the equation for

k = 1

so this value is excluded in the definition. The first few highly cototient numbers are:[1]

2, 4, 8, 23, 35, 47, 59, 63, 83, 89, 113, 119, 167, 209, 269, 299, 329, 389, 419, 509, 629, 659, 779, 839, 1049, 1169, 1259, 1469, 1649, 1679, 1889, ... Template:OEIS

Many of the highly cototient numbers are odd.[1]

The concept is somewhat analogous to that of highly composite numbers. Just as there are infinitely many highly composite numbers, there are also infinitely many highly cototient numbers. Computations become harder, since integer factorization becomes harder as the numbers get larger.

Example

The cototient of x is defined as xϕ(x), i.e. the number of positive integers less than or equal to x that have at least one prime factor in common with x. For example, the cototient of 6 is 4 since these four positive integers have a prime factor in common with 6: 2, 3, 4, 6. The cototient of 8 is also 4, this time with these integers: 2, 4, 6, 8. There are exactly two numbers, 6 and 8, which have cototient 4. There are fewer numbers which have cototient 2 and cototient 3 (one number in each case), so 4 is a highly cototient number.

Template:OEIS

k (highly cototient k are bolded) 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
Number of solutions to x – φ(x) = k 1 1 1 2 1 1 2 3 2 0 2 3 2 1 2 3 3 1 3 1 3 1 4 4 3 0 4 1 4 3
n ks such that kϕ(k)=n number of ks such that kϕ(k)=n Template:OEIS
0 1 1
1 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, ... (all primes)
2 4 1
3 9 1
4 6, 8 2
5 25 1
6 10 1
7 15, 49 2
8 12, 14, 16 3
9 21, 27 2
10 0
11 35, 121 2
12 18, 20, 22 3
13 33, 169 2
14 26 1
15 39, 55 2
16 24, 28, 32 3
17 65, 77, 289 3
18 34 1
19 51, 91, 361 3
20 38 1
21 45, 57, 85 3
22 30 1
23 95, 119, 143, 529 4
24 36, 40, 44, 46 4
25 69, 125, 133 3
26 0
27 63, 81, 115, 187 4
28 52 1
29 161, 209, 221, 841 4
30 42, 50, 58 3
31 87, 247, 961 3
32 48, 56, 62, 64 4
33 93, 145, 253 3
34 0
35 75, 155, 203, 299, 323 5
36 54, 68 2
37 217, 1369 2
38 74 1
39 99, 111, 319, 391 4
40 76 1
41 185, 341, 377, 437, 1681 5
42 82 1
43 123, 259, 403, 1849 4
44 60, 86 2
45 117, 129, 205, 493 4
46 66, 70 2
47 215, 287, 407, 527, 551, 2209 6
48 72, 80, 88, 92, 94 5
49 141, 301, 343, 481, 589 5
50 0

Primes

The first few highly cototient numbers which are primes are [2]

2, 23, 47, 59, 83, 89, 113, 167, 269, 389, 419, 509, 659, 839, 1049, 1259, 1889, 2099, 2309, 2729, 3359, 3989, 4289, 4409, 5879, 6089, 6719, 9029, 9239, ... Template:OEIS

See also

References

Template:Reflist


Template:Totient Template:Prime number classes Template:Classes of natural numbers