7-simplex honeycomb

From testwiki
Jump to navigation Jump to search

Template:Short description

7-simplex honeycomb
(No image)
Type Uniform 7-honeycomb
Family Simplectic honeycomb
Schläfli symbol {3[8]} = 0[8]
Coxeter diagram Template:CDD
6-face types {36} File:7-simplex t0.svg, t1{36} Error creating thumbnail:
t2{36} Error creating thumbnail: , t3{36} Error creating thumbnail:
6-face types {35} , t1{35}
t2{35}
5-face types {34} File:5-simplex t0.svg, t1{34} File:5-simplex t1.svg
t2{34} File:5-simplex t2.svg
4-face types {33} , t1{33} File:4-simplex t1.svg
Cell types {3,3} , t1{3,3} Error creating thumbnail:
Face types {3}
Vertex figure t0,6{36} Error creating thumbnail:
Symmetry A~7×21, <[3[8]]>
Properties vertex-transitive

In seven-dimensional Euclidean geometry, the 7-simplex honeycomb is a space-filling tessellation (or honeycomb). The tessellation fills space by 7-simplex, rectified 7-simplex, birectified 7-simplex, and trirectified 7-simplex facets. These facet types occur in proportions of 2:2:2:1 respectively in the whole honeycomb.

A7 lattice

This vertex arrangement is called the A7 lattice or 7-simplex lattice. The 56 vertices of the expanded 7-simplex vertex figure represent the 56 roots of the A~7 Coxeter group.[1] It is the 7-dimensional case of a simplectic honeycomb. Around each vertex figure are 254 facets: 8+8 7-simplex, 28+28 rectified 7-simplex, 56+56 birectified 7-simplex, 70 trirectified 7-simplex, with the count distribution from the 9th row of Pascal's triangle.

E~7 contains A~7 as a subgroup of index 144.[2] Both E~7 and A~7 can be seen as affine extensions from A7 from different nodes: File:Affine A7 E7 relations.png

The ATemplate:Sup sub lattice can be constructed as the union of two A7 lattices, and is identical to the E7 lattice.

Template:CDDTemplate:CDD = Template:CDD.

The ATemplate:Sup sub lattice is the union of four A7 lattices, which is identical to the E7* lattice (or ETemplate:Sup sub).

Template:CDDTemplate:CDDTemplate:CDDTemplate:CDD = Template:CDD + Template:CDD = dual of Template:CDD.

The ATemplate:Sup sub lattice (also called ATemplate:Sup sub) is the union of eight A7 lattices, and has the vertex arrangement to the dual honeycomb of the omnitruncated 7-simplex honeycomb, and therefore the Voronoi cell of this lattice is an omnitruncated 7-simplex.

Template:CDDTemplate:CDDTemplate:CDDTemplate:CDDTemplate:CDDTemplate:CDDTemplate:CDDTemplate:CDD = dual of Template:CDD.

Template:7-simplex honeycomb family

Projection by folding

The 7-simplex honeycomb can be projected into the 4-dimensional tesseractic honeycomb by a geometric folding operation that maps two pairs of mirrors into each other, sharing the same vertex arrangement:

A~7 Template:CDD
C~4 Template:CDD

See also

Regular and uniform honeycombs in 7-space:

Notes

Template:Reflist

References

  • Norman Johnson Uniform Polytopes, Manuscript (1991)
  • Kaleidoscopes: Selected Writings of H. S. M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley–Interscience Publication, 1995, Template:ISBN [1]
    • (Paper 22) H.S.M. Coxeter, Regular and Semi Regular Polytopes I, [Math. Zeit. 46 (1940) 380–407, MR 2,10] (1.9 Uniform space-fillings)
    • (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3–45]
Template:Navbar-collapsible
Space Family A~n1 C~n1 B~n1 D~n1 G~2 / F~4 / E~n1
E2 Uniform tiling 0[3] δ3 3 3 Hexagonal
E3 Uniform convex honeycomb 0[4] δ4 4 4
E4 Uniform 4-honeycomb 0[5] δ5 5 5 24-cell honeycomb
E5 Uniform 5-honeycomb 0[6] δ6 6 6
E6 Uniform 6-honeycomb 0[7] δ7 7 7 222
E7 Uniform 7-honeycomb 0[8] δ8 8 8 133331
E8 Uniform 8-honeycomb 0[9] δ9 9 9 152251521
E9 Uniform 9-honeycomb 0[10] δ10 10 10
E10 Uniform 10-honeycomb 0[11] δ11 11 11
En-1 Uniform (n-1)-honeycomb 0[n] δn n n 1k22k1k21
  1. Template:Cite web
  2. N.W. Johnson: Geometries and Transformations, (2018) 12.4: Euclidean Coxeter groups, p.294