Quarter hypercubic honeycomb

From testwiki
Jump to navigation Jump to search

In geometry, the quarter hypercubic honeycomb (or quarter n-cubic honeycomb) is a dimensional infinite series of honeycombs, based on the hypercube honeycomb. It is given a Schläfli symbol q{4,3...3,4} or Coxeter symbol qδ4 representing the regular form with three quarters of the vertices removed and containing the symmetry of Coxeter group D~n1 for n ≥ 5, with D~4 = A~4 and for quarter n-cubic honeycombs D~5 = B~5.[1]

n Name Schläfli
symbol
Coxeter diagrams Facets Vertex figure
3 File:Square tiling uniform coloring 4.png
quarter square tiling
q{4,4} Template:CDD or Template:CDD

Template:CDD or Template:CDD
Template:CDD

h{4}={2} { }×{ } File:Regular polygon 4 annotated.svg
{ }×{ }
4 File:Tetrahedral-truncated tetrahedral honeycomb slab.png
quarter cubic honeycomb
q{4,3,4} Template:CDD or Template:CDD
Template:CDD or Template:CDD
Template:CDD
File:Tetrahedron.png
h{4,3}
File:Truncated tetrahedron.png
h2{4,3}
Error creating thumbnail:
Elongated
triangular antiprism
5 quarter tesseractic honeycomb q{4,32,4} Template:CDD or Template:CDD
Template:CDD or Template:CDD
Template:CDD
File:Schlegel wireframe 16-cell.png
h{4,32}
File:Schlegel half-solid rectified 8-cell.png
h3{4,32}

{3,4}×{}
6 quarter 5-cubic honeycomb q{4,33,4} Template:CDD
Template:CDD
File:Demipenteract graph ortho.svg
h{4,33}
File:5-demicube t03 D5.svg
h4{4,33}
File:Quarter 5-cubic honeycomb verf.png
Rectified 5-cell antiprism
7 quarter 6-cubic honeycomb q{4,34,4} Template:CDD
Template:CDD
File:Demihexeract ortho petrie.svg
h{4,34}
File:6-demicube t04 D6.svg
h5{4,34}
{3,3}×{3,3}
8 quarter 7-cubic honeycomb q{4,35,4} Template:CDD
Template:CDD
File:Demihepteract ortho petrie.svg
h{4,35}
File:7-demicube t05 D7.svg
h6{4,35}
{3,3}×{3,31,1}
9 quarter 8-cubic honeycomb q{4,36,4} Template:CDD
Template:CDD

h{4,36}
File:8-demicube t06 D8.svg
h7{4,36}
{3,3}×{3,32,1}
{3,31,1}×{3,31,1}
 
n quarter n-cubic honeycomb q{4,3n-3,4} ... h{4,3n-2} hn-2{4,3n-2} ...

See also

References

Template:Reflist

  • Coxeter, H.S.M. Regular Polytopes, (3rd edition, 1973), Dover edition, Template:Isbn
    1. pp. 122–123, 1973. (The lattice of hypercubes γn form the cubic honeycombs, δn+1)
    2. pp. 154–156: Partial truncation or alternation, represented by q prefix
    3. p. 296, Table II: Regular honeycombs, δn+1
  • Kaleidoscopes: Selected Writings of H. S. M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, Template:Isbn [1]
    • (Paper 22) H.S.M. Coxeter, Regular and Semi Regular Polytopes I, [Math. Zeit. 46 (1940) 380-407, MR 2,10] (1.9 Uniform space-fillings)
    • (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3-45] See p318 [2]
  • Template:KlitzingPolytopes
Template:Navbar-collapsible
Space Family A~n1 C~n1 B~n1 D~n1 G~2 / F~4 / E~n1
E2 Uniform tiling 0[3] δ3 3 3 Hexagonal
E3 Uniform convex honeycomb 0[4] δ4 4 4
E4 Uniform 4-honeycomb 0[5] δ5 5 5 24-cell honeycomb
E5 Uniform 5-honeycomb 0[6] δ6 6 6
E6 Uniform 6-honeycomb 0[7] δ7 7 7 222
E7 Uniform 7-honeycomb 0[8] δ8 8 8 133331
E8 Uniform 8-honeycomb 0[9] δ9 9 9 152251521
E9 Uniform 9-honeycomb 0[10] δ10 10 10
E10 Uniform 10-honeycomb 0[11] δ11 11 11
En-1 Uniform (n-1)-honeycomb 0[n] δn n n 1k22k1k21
  1. Coxeter, Regular and semi-regular honeycoms, 1988, p.318-319