5-simplex

From testwiki
Jump to navigation Jump to search

Template:Short description Template:Uniform polyteron stat table In five-dimensional geometry, a 5-simplex is a self-dual regular 5-polytope. It has six vertices, 15 edges, 20 triangle faces, 15 tetrahedral cells, and 6 5-cell facets. It has a dihedral angle of cos−1(Template:Sfrac), or approximately 78.46°.

The 5-simplex is a solution to the problem: Make 20 equilateral triangles using 15 matchsticks, where each side of every triangle is exactly one matchstick.

Alternate names

It can also be called a hexateron, or hexa-5-tope, as a 6-facetted polytope in 5-dimensions. The name hexateron is derived from hexa- for having six facets and teron (with ter- being a corruption of tetra-) for having four-dimensional facets.

By Jonathan Bowers, a hexateron is given the acronym hix.[1]

As a configuration

This configuration matrix represents the 5-simplex. The rows and columns correspond to vertices, edges, faces, cells and 4-faces. The diagonal numbers say how many of each element occur in the whole 5-simplex. The nondiagonal numbers say how many of the column's element occur in or at the row's element. This self-dual simplex's matrix is identical to its 180 degree rotation.[2][3]

[65101052154643320334641525101056]

Regular hexateron cartesian coordinates

The hexateron can be constructed from a 5-cell by adding a 6th vertex such that it is equidistant from all the other vertices of the 5-cell.

The Cartesian coordinates for the vertices of an origin-centered regular hexateron having edge length 2 are:

(115, 110, 16, 13, ±1)(115, 110, 16, 23, 0)(115, 110, 32, 0, 0)(115, 225, 0, 0, 0)(53, 0, 0, 0, 0)

The vertices of the 5-simplex can be more simply positioned on a hyperplane in 6-space as permutations of (0,0,0,0,0,1) or (0,1,1,1,1,1). These constructions can be seen as facets of the 6-orthoplex or rectified 6-cube respectively.

Projected images

Template:5-simplex Coxeter plane graphs


Stereographic projection 4D to 3D of Schlegel diagram 5D to 4D of hexateron.

Lower symmetry forms

A lower symmetry form is a 5-cell pyramid {3,3,3}∨( ), with [3,3,3] symmetry order 120, constructed as a 5-cell base in a 4-space hyperplane, and an apex point above the hyperplane. The five sides of the pyramid are made of 5-cell cells. These are seen as vertex figures of truncated regular 6-polytopes, like a truncated 6-cube.

Another form is {3,3}∨{ }, with [3,3,2,1] symmetry order 48, the joining of an orthogonal digon and a tetrahedron, orthogonally offset, with all pairs of vertices connected between. Another form is {3}∨{3}, with [3,2,3,1] symmetry order 36, and extended symmetry [[3,2,3],1], order 72. It represents joining of 2 orthogonal triangles, orthogonally offset, with all pairs of vertices connected between.

The form { }∨{ }∨{ } has symmetry [2,2,1,1], order 8, extended by permuting 3 segments as [3[2,2],1] or [4,3,1,1], order 48.

These are seen in the vertex figures of bitruncated and tritruncated regular 6-polytopes, like a bitruncated 6-cube and a tritruncated 6-simplex. The edge labels here represent the types of face along that direction, and thus represent different edge lengths.

The vertex figure of the omnitruncated 5-simplex honeycomb, Template:CDD, is a 5-simplex with a petrie polygon cycle of 5 long edges. Its symmetry is isomorphic to dihedral group Dih6 or simple rotation group [6,2]+, order 12.

Vertex figures for uniform 6-polytopes
Join {3,3,3}∨( ) {3,3}∨{ } {3}∨{3} { }∨{ }∨{ }
Symmetry [3,3,3,1]
Order 120
[3,3,2,1]
Order 48
[[3,2,3],1]
Order 72
[3[2,2],1,1]=[4,3,1,1]
Order 48
~[6] or ~[6,2]+
Order 12
Diagram
Polytope truncated 6-simplex
Template:CDD
bitruncated 6-simplex
Template:CDD
tritruncated 6-simplex
Template:CDD
3-3-3 prism
Template:CDD
Omnitruncated 5-simplex honeycomb
Template:CDD

Compound

The compound of two 5-simplexes in dual configurations can be seen in this A6 Coxeter plane projection, with a red and blue 5-simplex vertices and edges. This compound has [[3,3,3,3]] symmetry, order 1440. The intersection of these two 5-simplexes is a uniform birectified 5-simplex. Template:CDD = Template:CDDTemplate:CDD.

It is first in a dimensional series of uniform polytopes and honeycombs, expressed by Coxeter as 13k series. A degenerate 4-dimensional case exists as 3-sphere tiling, a tetrahedral hosohedron.

13k dimensional figures
Space Finite Euclidean Hyperbolic
n 4 5 6 7 8 9
Coxeter
group
A3A1 A5 D6 E7 E~7=E7+ T¯8=E7++
Coxeter
diagram
Template:CDD Template:CDD Template:CDD Template:CDD Template:CDD Template:CDD
Symmetry [3−1,3,1] [30,3,1] [31,3,1] [32,3,1] [[33,3,1]] [34,3,1]
Order 48 720 23,040 2,903,040
Graph - -
Name 13,-1 130 131 132 133 134

It is first in a dimensional series of uniform polytopes and honeycombs, expressed by Coxeter as 3k1 series. A degenerate 4-dimensional case exists as 3-sphere tiling, a tetrahedral dihedron.

3k1 dimensional figures
Space Finite Euclidean Hyperbolic
n 4 5 6 7 8 9
Coxeter
group
A3A1 A5 D6 E7 E~7=E7+ T¯8=E7++
Coxeter
diagram
Template:CDD Template:CDD Template:CDD Template:CDD Template:CDD Template:CDD
Symmetry [3−1,3,1] [30,3,1] [[31,3,1]]
= [4,3,3,3,3]
[32,3,1] [33,3,1] [34,3,1]
Order 48 720 46,080 2,903,040
Graph - -
Name 31,-1 310 311 321 331 341

The 5-simplex, as 220 polytope is first in dimensional series 22k.

22k figures of n dimensions
Space Finite Euclidean Hyperbolic
n 4 5 6 7 8
Coxeter
group
A2A2 A5 E6 E~6=E6+ E6++
Coxeter
diagram
Template:CDD Template:CDD Template:CDD Template:CDD Template:CDD
Graph
Name 22,-1 220 221 222 223

The regular 5-simplex is one of 19 uniform polytera based on the [3,3,3,3] Coxeter group, all shown here in A5 Coxeter plane orthographic projections. (Vertices are colored by projection overlap order, red, orange, yellow, green, cyan, blue, purple having progressively more vertices)

Template:Hexateron family

See also

Notes

Template:Reflist

References

Template:Polytopes