Cyclotruncated 5-simplex honeycomb
| Cyclotruncated 5-simplex honeycomb | |
|---|---|
| (No image) | |
| Type | Uniform honeycomb |
| Family | Cyclotruncated simplectic honeycomb |
| Schläfli symbol | t0,1{3[6]} |
| Coxeter diagram | Template:CDD or Template:CDD |
| 5-face types | {3,3,3,3} t{3,3,3,3} 2t{3,3,3,3} |
| 4-face types | {3,3,3} t{3,3,3} |
| Cell types | {3,3} t{3,3} |
| Face types | {3} t{3} |
| Vertex figure | Elongated 5-cell antiprism |
| Coxeter groups | ×22, [[3[6]]] |
| Properties | vertex-transitive |
In five-dimensional Euclidean geometry, the cyclotruncated 5-simplex honeycomb or cyclotruncated hexateric honeycomb is a space-filling tessellation (or honeycomb). It is composed of 5-simplex, truncated 5-simplex, and bitruncated 5-simplex facets in a ratio of 1:1:1.
Structure
Its vertex figure is an elongated 5-cell antiprism, two parallel 5-cells in dual configurations, connected by 10 tetrahedral pyramids (elongated 5-cells) from the cell of one side to a point on the other. The vertex figure has 8 vertices and 12 5-cells.
It can be constructed as six sets of parallel hyperplanes that divide space. The hyperplane intersections generate cyclotruncated 5-cell honeycomb divisions on each hyperplane.
Related polytopes and honeycombs
Template:5-simplex honeycomb family
See also
Regular and uniform honeycombs in 5-space:
Notes
References
- Norman Johnson Uniform Polytopes, Manuscript (1991)
- Kaleidoscopes: Selected Writings of H.S.M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, Template:ISBN [1]
- (Paper 22) H.S.M. Coxeter, Regular and Semi Regular Polytopes I, [Math. Zeit. 46 (1940) 380-407, MR 2,10] (1.9 Uniform space-fillings)
- (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3-45]
| Template:Navbar-collapsible | ||||||
|---|---|---|---|---|---|---|
| Space | Family | / / | ||||
| E2 | Uniform tiling | 0[3] | δ3 | hδ3 | qδ3 | Hexagonal |
| E3 | Uniform convex honeycomb | 0[4] | δ4 | hδ4 | qδ4 | |
| E4 | Uniform 4-honeycomb | 0[5] | δ5 | hδ5 | qδ5 | 24-cell honeycomb |
| E5 | Uniform 5-honeycomb | 0[6] | δ6 | hδ6 | qδ6 | |
| E6 | Uniform 6-honeycomb | 0[7] | δ7 | hδ7 | qδ7 | 222 |
| E7 | Uniform 7-honeycomb | 0[8] | δ8 | hδ8 | qδ8 | 133 • 331 |
| E8 | Uniform 8-honeycomb | 0[9] | δ9 | hδ9 | qδ9 | 152 • 251 • 521 |
| E9 | Uniform 9-honeycomb | 0[10] | δ10 | hδ10 | qδ10 | |
| E10 | Uniform 10-honeycomb | 0[11] | δ11 | hδ11 | qδ11 | |
| En-1 | Uniform (n-1)-honeycomb | 0[n] | δn | hδn | qδn | 1k2 • 2k1 • k21 |