Cyclotruncated 5-simplex honeycomb

From testwiki
Revision as of 21:04, 3 June 2017 by imported>Magic links bot (Replace magic links with templates per local RfC and MediaWiki RfC)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search
Cyclotruncated 5-simplex honeycomb
(No image)
Type Uniform honeycomb
Family Cyclotruncated simplectic honeycomb
Schläfli symbol t0,1{3[6]}
Coxeter diagram Template:CDD or Template:CDD
5-face types {3,3,3,3}
t{3,3,3,3}
2t{3,3,3,3}
4-face types {3,3,3}
t{3,3,3}
Cell types {3,3}
t{3,3}
Face types {3}
t{3}
Vertex figure
Elongated 5-cell antiprism
Coxeter groups A~5×22, [[3[6]]]
Properties vertex-transitive

In five-dimensional Euclidean geometry, the cyclotruncated 5-simplex honeycomb or cyclotruncated hexateric honeycomb is a space-filling tessellation (or honeycomb). It is composed of 5-simplex, truncated 5-simplex, and bitruncated 5-simplex facets in a ratio of 1:1:1.

Structure

Its vertex figure is an elongated 5-cell antiprism, two parallel 5-cells in dual configurations, connected by 10 tetrahedral pyramids (elongated 5-cells) from the cell of one side to a point on the other. The vertex figure has 8 vertices and 12 5-cells.

It can be constructed as six sets of parallel hyperplanes that divide space. The hyperplane intersections generate cyclotruncated 5-cell honeycomb divisions on each hyperplane.

Template:5-simplex honeycomb family

See also

Regular and uniform honeycombs in 5-space:

Notes

Template:Reflist

References

  • Norman Johnson Uniform Polytopes, Manuscript (1991)
  • Kaleidoscopes: Selected Writings of H.S.M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, Template:ISBN [1]
    • (Paper 22) H.S.M. Coxeter, Regular and Semi Regular Polytopes I, [Math. Zeit. 46 (1940) 380-407, MR 2,10] (1.9 Uniform space-fillings)
    • (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3-45]
Template:Navbar-collapsible
Space Family A~n1 C~n1 B~n1 D~n1 G~2 / F~4 / E~n1
E2 Uniform tiling 0[3] δ3 3 3 Hexagonal
E3 Uniform convex honeycomb 0[4] δ4 4 4
E4 Uniform 4-honeycomb 0[5] δ5 5 5 24-cell honeycomb
E5 Uniform 5-honeycomb 0[6] δ6 6 6
E6 Uniform 6-honeycomb 0[7] δ7 7 7 222
E7 Uniform 7-honeycomb 0[8] δ8 8 8 133331
E8 Uniform 8-honeycomb 0[9] δ9 9 9 152251521
E9 Uniform 9-honeycomb 0[10] δ10 10 10
E10 Uniform 10-honeycomb 0[11] δ11 11 11
En-1 Uniform (n-1)-honeycomb 0[n] δn n n 1k22k1k21