3 31 honeycomb

From testwiki
Revision as of 18:33, 16 March 2023 by imported>Citation bot (Misc citation tidying. | Use this bot. Report bugs. | Suggested by AManWithNoPlan | #UCB_CommandLine)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search
331 honeycomb
(no image)
Type Uniform tessellation
Schläfli symbol {3,3,3,33,1}
Coxeter symbol 331
Coxeter-Dynkin diagram Template:CDD
7-face types 321
{36}
6-face types 221
{35}
5-face types 211
{34}
4-face type {33}
Cell type {32}
Face type {3}
Face figure 031
Edge figure 131
Vertex figure 231
Coxeter group E~7, [33,3,1]
Properties vertex-transitive

In 7-dimensional geometry, the 331 honeycomb is a uniform honeycomb, also given by Schläfli symbol {3,3,3,33,1} and is composed of 321 and 7-simplex facets, with 56 and 576 of them respectively around each vertex.

Construction

It is created by a Wythoff construction upon a set of 8 hyperplane mirrors in 7-dimensional space.

The facet information can be extracted from its Coxeter-Dynkin diagram.

Template:CDD

Removing the node on the short branch leaves the 6-simplex facet:

Template:CDD

Removing the node on the end of the 3-length branch leaves the 321 facet:

Template:CDD

The vertex figure is determined by removing the ringed node and ringing the neighboring node. This makes 231 polytope.

Template:CDD

The edge figure is determined by removing the ringed node and ringing the neighboring node. This makes 6-demicube (131).

Template:CDD

The face figure is determined by removing the ringed node and ringing the neighboring node. This makes rectified 5-simplex (031).

Template:CDD

The cell figure is determined by removing the ringed node of the face figure and ringing the neighboring nodes. This makes tetrahedral prism {}×{3,3}.

Template:CDD

Kissing number

Each vertex of this tessellation is the center of a 6-sphere in the densest known packing in 7 dimensions; its kissing number is 126, represented by the vertices of its vertex figure 231.

E7 lattice

The 331 honeycomb's vertex arrangement is called the E7 lattice.[1]

E~7 contains A~7 as a subgroup of index 144.[2] Both E~7 and A~7 can be seen as affine extension from A7 from different nodes:

The E7 lattice can also be expressed as a union of the vertices of two A7 lattices, also called A72:

Template:CDD = Template:CDDTemplate:CDD

The E7* lattice (also called E72)[3] has double the symmetry, represented by [[3,33,3]]. The Voronoi cell of the E7* lattice is the 132 polytope, and voronoi tessellation the 133 honeycomb.[4] The E7* lattice is constructed by 2 copies of the E7 lattice vertices, one from each long branch of the Coxeter diagram, and can be constructed as the union of four A7* lattices, also called A74:

Template:CDDTemplate:CDD = Template:CDDTemplate:CDDTemplate:CDDTemplate:CDD = dual of Template:CDD.

It is in a dimensional series of uniform polytopes and honeycombs, expressed by Coxeter as 3k1 series. A degenerate 4-dimensional case exists as 3-sphere tiling, a tetrahedral hosohedron.

3k1 dimensional figures
Space Finite Euclidean Hyperbolic
n 4 5 6 7 8 9
Coxeter
group
A3A1 A5 D6 E7 E~7=E7+ T¯8=E7++
Coxeter
diagram
Template:CDD Template:CDD Template:CDD Template:CDD Template:CDD Template:CDD
Symmetry [3−1,3,1] [30,3,1] [[31,3,1]]
= [4,3,3,3,3]
[32,3,1] [33,3,1] [34,3,1]
Order 48 720 46,080 2,903,040
Graph - -
Name 31,-1 310 311 321 331 341

See also

References

Template:Reflist

  • H. S. M. Coxeter, Regular Polytopes, 3rd Edition, Dover New York, 1973
  • Coxeter The Beauty of Geometry: Twelve Essays, Dover Publications, 1999, Template:ISBN (Chapter 3: Wythoff's Construction for Uniform Polytopes)
  • Kaleidoscopes: Selected Writings of H.S.M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, Template:ISBN [1] GoogleBook
    • (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3–45]
  • R. T. Worley, The Voronoi Region of E7*. SIAM J. Discrete Math., 1.1 (1988), 134-141.
  • Template:Cite book p124-125, 8.2 The 7-dimensinoal lattices: E7 and E7*
  • Template:KlitzingPolytopes
Template:Navbar-collapsible
Space Family A~n1 C~n1 B~n1 D~n1 G~2 / F~4 / E~n1
E2 Uniform tiling 0[3] δ3 3 3 Hexagonal
E3 Uniform convex honeycomb 0[4] δ4 4 4
E4 Uniform 4-honeycomb 0[5] δ5 5 5 24-cell honeycomb
E5 Uniform 5-honeycomb 0[6] δ6 6 6
E6 Uniform 6-honeycomb 0[7] δ7 7 7 222
E7 Uniform 7-honeycomb 0[8] δ8 8 8 133331
E8 Uniform 8-honeycomb 0[9] δ9 9 9 152251521
E9 Uniform 9-honeycomb 0[10] δ10 10 10
E10 Uniform 10-honeycomb 0[11] δ11 11 11
En-1 Uniform (n-1)-honeycomb 0[n] δn n n 1k22k1k21
  1. Template:Cite web
  2. N.W. Johnson: Geometries and Transformations, (2018) Chapter 12: Euclidean symmetry groups, p 177
  3. Template:Cite web
  4. The Voronoi Cells of the E6* and E7* Lattices Template:Webarchive, Edward Pervin