Time dependent vector field
{{#invoke:sidebar|collapsible | class = plainlist | titlestyle = padding-bottom:0.25em; | pretitle = Part of a series of articles about | title = Calculus | image = | listtitlestyle = text-align:center; | liststyle = border-top:1px solid #aaa;padding-top:0.15em;border-bottom:1px solid #aaa; | expanded = | abovestyle = padding:0.15em 0.25em 0.3em;font-weight:normal; | above =
Template:EndflatlistTemplate:Startflatlist
| list2name = differential | list2titlestyle = display:block;margin-top:0.65em; | list2title = Template:Bigger | list2 ={{#invoke:sidebar|sidebar|child=yes
|contentclass=hlist | heading1 = Definitions | content1 =
| heading2 = Concepts | content2 =
- Differentiation notation
- Second derivative
- Implicit differentiation
- Logarithmic differentiation
- Related rates
- Taylor's theorem
| heading3 = Rules and identities | content3 =
- Sum
- Product
- Chain
- Power
- Quotient
- L'Hôpital's rule
- Inverse
- General Leibniz
- Faà di Bruno's formula
- Reynolds
}}
| list3name = integral | list3title = Template:Bigger | list3 ={{#invoke:sidebar|sidebar|child=yes
|contentclass=hlist | content1 =
| heading2 = Definitions
| content2 =
- Antiderivative
- Integral (improper)
- Riemann integral
- Lebesgue integration
- Contour integration
- Integral of inverse functions
| heading3 = Integration by | content3 =
- Parts
- Discs
- Cylindrical shells
- Substitution (trigonometric, tangent half-angle, Euler)
- Euler's formula
- Partial fractions (Heaviside's method)
- Changing order
- Reduction formulae
- Differentiating under the integral sign
- Risch algorithm
}}
| list4name = series | list4title = Template:Bigger | list4 ={{#invoke:sidebar|sidebar|child=yes
|contentclass=hlist | content1 =
| heading2 = Convergence tests | content2 =
- Summand limit (term test)
- Ratio
- Root
- Integral
- Direct comparison
Limit comparison- Alternating series
- Cauchy condensation
- Dirichlet
- Abel
}}
| list5name = vector | list5title = Template:Bigger | list5 ={{#invoke:sidebar|sidebar|child=yes
|contentclass=hlist | content1 =
| heading2 = Theorems | content2 =
}}
| list6name = multivariable | list6title = Template:Bigger | list6 ={{#invoke:sidebar|sidebar|child=yes
|contentclass=hlist | heading1 = Formalisms | content1 =
| heading2 = Definitions | content2 =
- Partial derivative
- Multiple integral
- Line integral
- Surface integral
- Volume integral
- Jacobian
- Hessian
}}
| list7name = advanced | list7title = Template:Bigger | list7 ={{#invoke:sidebar|sidebar|child=yes
|contentclass=hlist | content1 =
}}
| list8name = specialized | list8title = Template:Bigger | list8 =
| list9name = miscellanea | list9title = Template:Bigger | list9 =
- Precalculus
- History
- Glossary
- List of topics
- Integration Bee
- Mathematical analysis
- Nonstandard analysis
}} In mathematics, a time dependent vector field is a construction in vector calculus which generalizes the concept of vector fields. It can be thought of as a vector field which moves as time passes. For every instant of time, it associates a vector to every point in a Euclidean space or in a manifold.
Definition
A time dependent vector field on a manifold M is a map from an open subset on
such that for every , is an element of .
For every such that the set
is nonempty, is a vector field in the usual sense defined on the open set .
Associated differential equation
Given a time dependent vector field X on a manifold M, we can associate to it the following differential equation:
which is called nonautonomous by definition.
Integral curve
An integral curve of the equation above (also called an integral curve of X) is a map
such that , is an element of the domain of definition of X and
- .
Equivalence with time-independent vector fields
A time dependent vector field on can be thought of as a vector field on where does not depend on
Conversely, associated with a time-dependent vector field on is a time-independent one
on In coordinates,
The system of autonomous differential equations for is equivalent to that of non-autonomous ones for and is a bijection between the sets of integral curves of and respectively.
Flow
The flow of a time dependent vector field X, is the unique differentiable map
such that for every ,
is the integral curve of X that satisfies .
Properties
We define as
- If and then
- , is a diffeomorphism with inverse .
Applications
Let X and Y be smooth time dependent vector fields and the flow of X. The following identity can be proved:
Also, we can define time dependent tensor fields in an analogous way, and prove this similar identity, assuming that is a smooth time dependent tensor field:
This last identity is useful to prove the Darboux theorem.
References
- Lee, John M., Introduction to Smooth Manifolds, Springer-Verlag, New York (2003) Template:Isbn. Graduate-level textbook on smooth manifolds.