Template:Common Banach spaces

From testwiki
Jump to navigation Jump to search

Glossary of symbols for the table below:

Classical Banach spaces
Dual space Reflexive weakly sequentially complete Norm Notes
𝔽n 𝔽n Template:Yes Template:Yes x2 =(i=1n|xi|2)1/2 Euclidean space
pn qn Template:Yes Template:Yes xp =(i=1n|xi|p)1p
n 1n Template:Yes Template:Yes x =max\nolimits 1in|xi|
p q Template:Yes Template:Yes xp =(i=1|xi|p)1p
1 Template:No Template:Yes x1 =i=1|xi|
ba Template:No Template:No x =sup\nolimits i|xi|
c 1 Template:No Template:No x =sup\nolimits i|xi|
c0 1 Template:No Template:No x =sup\nolimits i|xi| Isomorphic but not isometric to c.
bv Template:No Template:Yes xbv =|x1|+i=1|xi+1xi| Isometrically isomorphic to 1.
bv0 Template:No Template:Yes xbv0 =i=1|xi+1xi| Isometrically isomorphic to 1.
bs ba Template:No Template:No xbs =sup\nolimits n|i=1nxi| Isometrically isomorphic to .
cs 1 Template:No Template:No xbs =sup\nolimits n|i=1nxi| Isometrically isomorphic to c.
B(K,Ξ) ba(Ξ) Template:No Template:No fB =sup\nolimits kK|f(k)|
C(K) rca(K) Template:No Template:No xC(K) =max\nolimits kK|f(k)|
ba(Ξ) ? Template:No Template:Yes μba =sup\nolimits SΞ|μ|(S)
ca(Σ) ? Template:No Template:Yes μba =sup\nolimits SΣ|μ|(S) A closed subspace of ba(Σ).
rca(Σ) ? Template:No Template:Yes μba =sup\nolimits SΣ|μ|(S) A closed subspace of ca(Σ).
Lp(μ) Lq(μ) Template:Yes Template:Yes fp =(|f|pdμ)1p
L1(μ) L(μ) Template:No Template:Yes f1 =|f|dμ The dual is L(μ) if μ is σ-finite.
BV([a,b]) ? Template:No Template:Yes fBV =Vf([a,b])+lim\nolimits xa+f(x) Vf([a,b]) is the total variation of f
NBV([a,b]) ? Template:No Template:Yes fBV =Vf([a,b]) NBV([a,b]) consists of BV([a,b]) functions such that lim\nolimits xa+f(x)=0
AC([a,b]) 𝔽+L([a,b]) Template:No Template:Yes fBV =Vf([a,b])+lim\nolimits xa+f(x) Isomorphic to the Sobolev space W1,1([a,b]).
Cn([a,b]) rca([a,b]) Template:No Template:No f =i=0nsup\nolimits x[a,b]|f(i)(x)| Isomorphic to nC([a,b]), essentially by Taylor's theorem.