Square tiling honeycomb

From testwiki
Jump to navigation Jump to search

Template:See also

Square tiling honeycomb
File:H3 443 FC boundary.png
Type Hyperbolic regular honeycomb
Paracompact uniform honeycomb
Schläfli symbols {4,4,3}
r{4,4,4}
{41,1,1}
Coxeter diagrams Template:CDD
Template:CDD
Template:CDDTemplate:CDD
Template:CDDTemplate:CDD
Template:CDDTemplate:CDD
Cells {4,4} File:Square tiling uniform coloring 1.svg Error creating thumbnail: Error creating thumbnail:
Faces square {4}
Edge figure triangle {3}
Vertex figure File:Square tiling honeycomb verf.png
cube, {4,3}
Dual Order-4 octahedral honeycomb
Coxeter groups R3, [4,4,3]
N3, [43]
M3, [41,1,1]
Properties Regular

In the geometry of hyperbolic 3-space, the square tiling honeycomb is one of 11 paracompact regular honeycombs. It is called paracompact because it has infinite cells, whose vertices exist on horospheres and converge to a single ideal point at infinity. Given by Schläfli symbol {4,4,3}, it has three square tilings, {4,4}, around each edge, and six square tilings around each vertex, in a cubic {4,3} vertex figure.[1]

Template:Honeycomb

Rectified order-4 square tiling

It is also seen as a rectified order-4 square tiling honeycomb, r{4,4,4}:

{4,4,4} r{4,4,4} = {4,4,3}
Template:CDD Template:CDD = Template:CDD

Symmetry

The square tiling honeycomb has three reflective symmetry constructions: Template:CDD as a regular honeycomb, a half symmetry construction Template:CDDTemplate:CDD, and lastly a construction with three types (colors) of checkered square tilings Template:CDDTemplate:CDD.

It also contains an index 6 subgroup [4,4,3*] ↔ [41,1,1], and a radial subgroup [4,(4,3)*] of index 48, with a right dihedral-angled octahedral fundamental domain, and four pairs of ultraparallel mirrors: Template:CDD.

This honeycomb contains Template:CDD that tile 2-hypercycle surfaces, which are similar to the paracompact order-3 apeirogonal tiling Template:CDD:

Error creating thumbnail:

The square tiling honeycomb is a regular hyperbolic honeycomb in 3-space. It is one of eleven regular paracompact honeycombs. Template:Regular paracompact H3 honeycombs

There are fifteen uniform honeycombs in the [4,4,3] Coxeter group family, including this regular form, and its dual, the order-4 octahedral honeycomb, {3,4,4}. Template:443 family

The square tiling honeycomb is part of the order-4 square tiling honeycomb family, as it can be seen as a rectified order-4 square tiling honeycomb. Template:444 family

It is related to the 24-cell, {3,4,3}, which also has a cubic vertex figure. It is also part of a sequence of honeycombs with square tiling cells: Template:Square tiling tessellations

Rectified square tiling honeycomb

Rectified square tiling honeycomb
Type Paracompact uniform honeycomb
Semiregular honeycomb
Schläfli symbols r{4,4,3} or t1{4,4,3}
2r{3,41,1}
r{41,1,1}
Coxeter diagrams Template:CDD
Template:CDDTemplate:CDD
Template:CDDTemplate:CDD
Template:CDDTemplate:CDD
Cells {4,3} Error creating thumbnail:
r{4,4}
Faces square {4}
Vertex figure
triangular prism
Coxeter groups R3, [4,4,3]
O3, [3,41,1]
M3, [41,1,1]
Properties Vertex-transitive, edge-transitive

The rectified square tiling honeycomb, t1{4,4,3}, Template:CDD has cube and square tiling facets, with a triangular prism vertex figure.

File:H3 443 boundary 0100.png

It is similar to the 2D hyperbolic uniform triapeirogonal tiling, r{∞,3}, with triangle and apeirogonal faces.

File:H2 tiling 23i-2.png

Template:Clear

Truncated square tiling honeycomb

Truncated square tiling honeycomb
Type Paracompact uniform honeycomb
Schläfli symbols t{4,4,3} or t0,1{4,4,3}
Coxeter diagrams Template:CDD
Template:CDD
Template:CDDTemplate:CDD
Template:CDDTemplate:CDD
Cells {4,3} Error creating thumbnail:
t{4,4}File:Uniform tiling 44-t01.png
Faces square {4}
octagon {8}
Vertex figure File:Truncated square tiling honeycomb verf.png
triangular pyramid
Coxeter groups R3, [4,4,3]
N3, [43]
M3, [41,1,1]
Properties Vertex-transitive

The truncated square tiling honeycomb, t{4,4,3}, Template:CDD has cube and truncated square tiling facets, with a triangular pyramid vertex figure. It is the same as the cantitruncated order-4 square tiling honeycomb, tr{4,4,4}, Template:CDD.

File:H3 443-1100.png Template:Clear

Bitruncated square tiling honeycomb

Bitruncated square tiling honeycomb
Type Paracompact uniform honeycomb
Schläfli symbols 2t{4,4,3} or t1,2{4,4,3}
Coxeter diagram Template:CDD
Cells t{4,3} File:Uniform polyhedron-43-t01.png
t{4,4}File:Uniform tiling 44-t01.png
Faces triangle {3}
square {4}
octagon {8}
Vertex figure File:Bitruncated square tiling honeycomb verf.png
digonal disphenoid
Coxeter groups R3, [4,4,3]
Properties Vertex-transitive

The bitruncated square tiling honeycomb, 2t{4,4,3}, Template:CDD has truncated cube and truncated square tiling facets, with a digonal disphenoid vertex figure.

Error creating thumbnail: Template:Clear

Cantellated square tiling honeycomb

Cantellated square tiling honeycomb
Type Paracompact uniform honeycomb
Schläfli symbols rr{4,4,3} or t0,2{4,4,3}
Coxeter diagrams Template:CDD
Template:CDDTemplate:CDD
Cells r{4,3} Error creating thumbnail:
rr{4,4}File:Uniform tiling 44-t02.svg
{}x{3}File:Triangular prism.png
Faces triangle {3}
square {4}
Vertex figure File:Cantellated square tiling honeycomb verf.png
isosceles triangular prism
Coxeter groups R3, [4,4,3]
Properties Vertex-transitive

The cantellated square tiling honeycomb, rr{4,4,3}, Template:CDD has cuboctahedron, square tiling, and triangular prism facets, with an isosceles triangular prism vertex figure.

File:H3 443-1010.png Template:Clear

Cantitruncated square tiling honeycomb

Cantitruncated square tiling honeycomb
Type Paracompact uniform honeycomb
Schläfli symbols tr{4,4,3} or t0,1,2{4,4,3}
Coxeter diagram Template:CDD
Cells t{4,3} File:Uniform polyhedron-43-t01.png
tr{4,4}File:Uniform tiling 44-t012.png
{}x{3} File:Triangular prism.png
Faces triangle {3}
square {4}
octagon {8}
Vertex figure File:Cantitruncated square tiling honeycomb verf.png
isosceles triangular pyramid
Coxeter groups R3, [4,4,3]
Properties Vertex-transitive

The cantitruncated square tiling honeycomb, tr{4,4,3}, Template:CDD has truncated cube, truncated square tiling, and triangular prism facets, with an isosceles triangular pyramid vertex figure.

File:H3 443-1110.png Template:Clear

Runcinated square tiling honeycomb

Runcinated square tiling honeycomb
Type Paracompact uniform honeycomb
Schläfli symbol t0,3{4,4,3}
Coxeter diagrams Template:CDD
Template:CDDTemplate:CDD
Cells {3,4} File:Uniform polyhedron-43-t2.png
{4,4}File:Uniform tiling 44-t0.svg
{}x{4} File:Tetragonal prism.png
{}x{3} File:Triangular prism.png
Faces triangle {3}
square {4}
Vertex figure File:Runcinated square tiling honeycomb verf.png
irregular triangular antiprism
Coxeter groups R3, [4,4,3]
Properties Vertex-transitive

The runcinated square tiling honeycomb, t0,3{4,4,3}, Template:CDD has octahedron, triangular prism, cube, and square tiling facets, with an irregular triangular antiprism vertex figure.

File:H3 443-1001.png Template:Clear

Runcitruncated square tiling honeycomb

Runcitruncated square tiling honeycomb
Type Paracompact uniform honeycomb
Schläfli symbols t0,1,3{4,4,3}
s2,3{3,4,4}
Coxeter diagrams Template:CDD
Template:CDD
Cells rr{4,3} File:Uniform polyhedron-43-t02.png
t{4,4}File:Uniform tiling 44-t01.png
{}x{3} File:Triangular prism.png
{}x{8} File:Octagonal prism.png
Faces triangle {3}
square {4}
octagon {8}
Vertex figure Error creating thumbnail:
isosceles-trapezoidal pyramid
Coxeter groups R3, [4,4,3]
Properties Vertex-transitive

The runcitruncated square tiling honeycomb, t0,1,3{4,4,3}, Template:CDD has rhombicuboctahedron, octagonal prism, triangular prism and truncated square tiling facets, with an isosceles-trapezoidal pyramid vertex figure.

File:H3 443-1101.png Template:Clear

Runcicantellated square tiling honeycomb

The runcicantellated square tiling honeycomb is the same as the runcitruncated order-4 octahedral honeycomb.

Omnitruncated square tiling honeycomb

Omnitruncated square tiling honeycomb
Type Paracompact uniform honeycomb
Schläfli symbol t0,1,2,3{4,4,3}
Coxeter diagram Template:CDD
Cells tr{4,4} File:Uniform tiling 44-t012.png
{}x{6} Error creating thumbnail:
{}x{8} File:Octagonal prism.png
tr{4,3} File:Uniform polyhedron-43-t012.png
Faces square {4}
hexagon {6}
octagon {8}
Vertex figure Error creating thumbnail:
irregular tetrahedron
Coxeter groups R3, [4,4,3]
Properties Vertex-transitive

The omnitruncated square tiling honeycomb, t0,1,2,3{4,4,3}, Template:CDD has truncated square tiling, truncated cuboctahedron, hexagonal prism, and octagonal prism facets, with an irregular tetrahedron vertex figure.

Error creating thumbnail: Template:Clear

Omnisnub square tiling honeycomb

Omnisnub square tiling honeycomb
Type Paracompact uniform honeycomb
Schläfli symbol h(t0,1,2,3{4,4,3})
Coxeter diagram Template:CDD
Cells sr{4,4} Error creating thumbnail:
sr{2,3} Error creating thumbnail:
sr{2,4} File:Square antiprism.png
sr{4,3} File:Uniform polyhedron-43-s012.png
Faces triangle {3}
square {4}
Vertex figure irregular tetrahedron
Coxeter group [4,4,3]+
Properties Non-uniform, vertex-transitive

The alternated omnitruncated square tiling honeycomb (or omnisnub square tiling honeycomb), h(t0,1,2,3{4,4,3}), Template:CDD has snub square tiling, snub cube, triangular antiprism, square antiprism, and tetrahedron cells, with an irregular tetrahedron vertex figure.

Template:Clear

Alternated square tiling honeycomb

Alternated square tiling honeycomb
Type Paracompact uniform honeycomb
Semiregular honeycomb
Schläfli symbol h{4,4,3}
hr{4,4,4}
{(4,3,3,4)}
h{41,1,1}
Coxeter diagrams Template:CDDTemplate:CDD
Template:CDDTemplate:CDD
Template:CDDTemplate:CDD
Template:CDDTemplate:CDD
Template:CDDTemplate:CDDTemplate:CDD
Cells {4,4} File:Uniform tiling 44-t0.svg
{4,3}
Faces square {4}
Vertex figure Error creating thumbnail:
cuboctahedron
Coxeter groups O3, [3,41,1]
[4,1+,4,4] ↔ [∞,4,4,∞]
BR^3, [(4,4,3,3)]
[1+,41,1,1] ↔ [∞[6]]
Properties Vertex-transitive, edge-transitive, quasiregular

The alternated square tiling honeycomb, h{4,4,3}, Template:CDD is a quasiregular paracompact uniform honeycomb in hyperbolic 3-space. It has cube and square tiling facets in a cuboctahedron vertex figure.

Template:Clear

Cantic square tiling honeycomb

Cantic square tiling honeycomb
Type Paracompact uniform honeycomb
Schläfli symbol h2{4,4,3}
Coxeter diagrams Template:CDDTemplate:CDD
Cells t{4,4} Error creating thumbnail:
r{4,3} Error creating thumbnail:
t{4,3} File:Uniform polyhedron-43-t01.png
Faces triangle {3}
square {4}
octagon {8}
Vertex figure
rectangular pyramid
Coxeter groups O3, [3,41,1]
Properties Vertex-transitive

The cantic square tiling honeycomb, h2{4,4,3}, Template:CDD is a paracompact uniform honeycomb in hyperbolic 3-space. It has truncated square tiling, truncated cube, and cuboctahedron facets, with a rectangular pyramid vertex figure.

Template:Clear

Runcic square tiling honeycomb

Runcic square tiling honeycomb
Type Paracompact uniform honeycomb
Schläfli symbol h3{4,4,3}
Coxeter diagrams Template:CDDTemplate:CDD
Cells {4,4} File:Uniform tiling 44-t0.svg
r{4,3} File:Uniform polyhedron-43-t02.png
{3,4} File:Uniform polyhedron-43-t2.png
Faces triangle {3}
square {4}
Vertex figure Error creating thumbnail:
square frustum
Coxeter groups O3, [3,41,1]
Properties Vertex-transitive

The runcic square tiling honeycomb, h3{4,4,3}, Template:CDD is a paracompact uniform honeycomb in hyperbolic 3-space. It has square tiling, rhombicuboctahedron, and octahedron facets in a square frustum vertex figure.

Template:Clear

Runcicantic square tiling honeycomb

Runcicantic square tiling honeycomb
Type Paracompact uniform honeycomb
Schläfli symbol h2,3{4,4,3}
Coxeter diagrams Template:CDDTemplate:CDD
Cells t{4,4}
tr{4,3} File:Uniform polyhedron-43-t012.png
t{3,4} File:Uniform polyhedron-43-t12.png
Faces square {4}
hexagon {6}
octagon {8}
Vertex figure Error creating thumbnail:
mirrored sphenoid
Coxeter groups O3, [3,41,1]
Properties Vertex-transitive

The runcicantic square tiling honeycomb, h2,3{4,4,3}, Template:CDDTemplate:CDD, is a paracompact uniform honeycomb in hyperbolic 3-space. It has truncated square tiling, truncated cuboctahedron, and truncated octahedron facets in a mirrored sphenoid vertex figure.

Template:Clear

Alternated rectified square tiling honeycomb

Alternated rectified square tiling honeycomb
Type Paracompact uniform honeycomb
Schläfli symbol hr{4,4,3}
Coxeter diagrams Template:CDDTemplate:CDD
Cells
Faces
Vertex figure triangular prism
Coxeter groups [4,1+,4,3] = [∞,3,3,∞]
Properties Nonsimplectic, vertex-transitive

The alternated rectified square tiling honeycomb is a paracompact uniform honeycomb in hyperbolic 3-space.

Template:Clear

See also

References

Template:Reflist

  1. Coxeter The Beauty of Geometry, 1999, Chapter 10, Table III