Percolation critical exponents

From testwiki
Jump to navigation Jump to search

Template:Use American English Template:Short description Template:Use mdy dates Template:Cat more

In the context of the physical and mathematical theory of percolation, a percolation transition is characterized by a set of universal critical exponents, which describe the fractal properties of the percolating medium at large scales and sufficiently close to the transition. The exponents are universal in the sense that they only depend on the type of percolation model and on the space dimension. They are expected to not depend on microscopic details such as the lattice structure, or whether site or bond percolation is considered. This article deals with the critical exponents of random percolation.

Percolating systems have a parameter p which controls the occupancy of sites or bonds in the system. At a critical value pc, the mean cluster size goes to infinity and the percolation transition takes place. As one approaches pc, various quantities either diverge or go to a constant value by a power law in |ppc|, and the exponent of that power law is the critical exponent. While the exponent of that power law is generally the same on both sides of the threshold, the coefficient or "amplitude" is generally different, leading to a universal amplitude ratio.

Description

Thermodynamic or configurational systems near a critical point or a continuous phase transition become fractal, and the behavior of many quantities in such circumstances is described by universal critical exponents. Percolation theory is a particularly simple and fundamental model in statistical mechanics which has a critical point, and a great deal of work has been done in finding its critical exponents, both theoretically (limited to two dimensions) and numerically.

Critical exponents exist for a variety of observables, but most of them are linked to each other by exponent (or scaling) relations. Only a few of them are independent, and the choice of the fundamental exponents depends on the focus of the study at hand. One choice is the set {σ,τ} motivated by the cluster size distribution, another choice is {df,ν} motivated by the structure of the infinite cluster. So-called correction exponents extend these sets, they refer to higher orders of the asymptotic expansion around the critical point.

Definitions of exponents

Self-similarity at the percolation threshold

Percolation clusters become self-similar precisely at the threshold density pc for sufficiently large length scales, entailing the following asymptotic power laws:

The fractal dimension df relates how the mass of the incipient infinite cluster depends on the radius or another length measure, M(L)Ldf at p=pc and for large probe sizes, L. Other notation: magnetic exponent yh=D=df and co-dimension Δσ=ddf.

The Fisher exponent τ characterizes the cluster-size distribution ns, which is often determined in computer simulations. The latter counts the number of clusters with a given size (volume) s, normalized by the total volume (number of lattice sites). The distribution obeys a power law at the threshold, nssτ asymptotically as s.

The probability for two sites separated by a distance r to belong to the same cluster decays as g(r)|r|2(ddf) or g(r)|r|d+(2η) for large distances, which introduces the anomalous dimension η. Also, δ=(d+2η)/(d2+η) and η=2γ/ν.

The exponent Ω is connected with the leading correction to scaling, which appears, e.g., in the asymptotic expansion of the cluster-size distribution, nssτ(1+const×sΩ) for s. Also, ω=Ω/(σν)=Ωdf.

For quantities like the mean cluster size Sa0|ppc|γ(1+a1(ppc)Δ1+), the corrections are controlled by the exponent Δ1=Ωβδ=ων.[1]

The minimum or chemical distance or shortest-path exponent dmin describes how the average minimum distance relates to the Euclidean distance r, namely rdmin Note, it is more appropriate and practical to measure average r, <r> for a given . The elastic backbone [2] has the same fractal dimension as the shortest path. A related quantity is the spreading dimension d, which describes the scaling of the mass M of a critical cluster within a chemical distance as Md, and is related to the fractal dimension df of the cluster by d=df/dmin. The chemical distance can also be thought of as a time in an epidemic growth process, and one also defines νt where dmin=νt/ν=z, and z is the dynamical exponent.[3] One also writes ν=νt.

Also related to the minimum dimension is the simultaneous growth of two nearby clusters. The probability that the two clusters coalesce exactly in time t scales as p(t)tλ[4] with λ=1+5/(4dmin).[5]

The dimension of the backbone, which is defined as the subset of cluster sites carrying the current when a voltage difference is applied between two sites far apart, is db (or dBB). One also defines ξ=ddb.[6]

The fractal dimension of the random walk on an infinite incipient percolation cluster is given by dw.

The spectral dimension d~ such that the average number of distinct sites visited in an N-step random walk scales as Nd~.

Critical behavior close to the percolation threshold

The approach to the percolation threshold is governed by power laws again, which hold asymptotically close to pc:

The exponent ν describes the divergence of the correlation length ξ as the percolation transition is approached, ξ|ppc|ν. The infinite cluster becomes homogeneous at length scales beyond the correlation length; further, it is a measure for the linear extent of the largest finite cluster. Other notation: Thermal exponent yt=1/ν and dimension Δϵ=d1/ν.

Off criticality, only finite clusters exist up to a largest cluster size smax, and the cluster-size distribution is smoothly cut off by a rapidly decaying function, nssτf(s/smax). The exponent σ characterizes the divergence of the cutoff parameter, smax|ppc|1/σ. From the fractal relation we have smaxξdf, yielding σ=1/νdf.

The density of clusters (number of clusters per site) nc is continuous at the threshold but its third derivative goes to infinity as determined by the exponent α: ncA+B(ppc)+C(ppc)2+D±|ppc|2α+, where D± represents the coefficient above and below the transition point.

The strength or weight of the percolating cluster, P or P, is the probability that a site belongs to an infinite cluster. P is zero below the transition and is non-analytic. Just above the transition, P(ppc)β, defining the exponent β.  P plays the role of an order parameter.

The divergence of the mean cluster size S=ss2ns/pc|ppc|γ introduces the exponent γ.

The gap exponent Δ is defined as Δ = 1/(β+γ) = 1/σ and represents the "gap" in critical exponent values from one moment Mn to the next Mn+1 for n>2.

The conductivity exponent t=νt describes how the electrical conductivity C goes to zero in a conductor-insulator mixture, C(ppc)t. Also, t=ζ.

Surface critical exponents

The probability a point at a surface belongs to the percolating or infinite cluster for ppc is Psurf(ppc)βsurf.

The surface fractal dimension is given by dsurf=d1βsurf/ν.[7]

Correlations parallel and perpendicular to the surface decay as g(r)|r|2dη and g(r)|r|2dη.[8]

The mean size of finite clusters connected to a site in the surface is χ1|ppc|γ1.[9][10][11]

The mean number of surface sites connected to a site in the surface is χ1,1|ppc|γ1,1.[9][10][11]

Scaling relations

Hyperscaling relations

τ=ddf+1
df=dβν
η=2+d2df

Relations based on {σ,τ}

α=2τ1σ
β=τ2σ
γ=3τσ
β+γ=1σ=νdf
ν=τ1σd=2β+γd
δ=1τ2

Relations based on {df,ν}

α=2νd
β=ν(ddf)
γ=ν(2dfd)
σ=1νdf

Conductivity scaling relations

dw=d+tβν
t=dwdf
d~=2df/dw

Surface scaling relations

η=2d+2βsurf/ν
dsurf=d1βsurf/ν
η=2ηη[12]
γ1=ν(2η)[11]
γ1,1=ν(d12βsurf/ν)=ν(1η)[11][13]
γ+ν=2γ1γ1,1[10][11]
x1=βsurf/ν

Exponents for standard percolation

Template:Math Template:Math[14] Template:Math Template:Math Template:Math Template:Math Template:Math[15][16][17]Template:Refn Template:Math
Template:Math 1 –2/3 -0.625(3)
-0.64(4)[18]
-0.756(40)
-0.75(2)[18]
-0.870(1)[18] 1+ε7443223273ε2 -1
Template:Math 0 0.14(3) [19]

5/36

0.39(2)[20]
0.4181(8)
0.41(1) [21]
0.405(25),[22]
0.4273[23]

0.4053(5)[24]
0.429(4) [18]

0.52(3)[20]
0.639(20)[25]
0.657(9)
0.6590[23]

0.658(1) [18]

0.66(5)[20]
0.835(5)[25]
0.830(10)
0.8457[23]

0.8454(2)[18]

1ε761223273ε2 1
Template:Math 1 43/18 1.6[21]
1.80(5) [20]
1.66(7) [26]
1.793(3)
1.805(20) [25]
1.8357[23]
1.819(3)[24]

1.78(3)[18]

1.6(1) [20]
1.48(8)[26]
1.422(16)
1.4500[23]
1.435(15)[25]

1.430(6)[18]

1.3(1)[20]

1.18(7)[26]
1.185(5) [25]
1.1817[23]
1.1792(7) [18]

1+ε7+565223273ε2 1
Template:Math 91/5, 18 [27] 5.29(6) [28]Template:Ref
5.3 [27]

5.16(4) [18]

3.9 [27]
3.198(6) [29]

3.175(8) [18]

3.0 [27]

2.3952(12) [18]

2+27ε+56523273ε2 2
Template:Math 1 5/24 -0.046(8)[28]
-0.059(9) [30]
-0.07(5)[25]
-0.0470[23]

−0.03(1)[18]

-0.12(4)[25]
-0.0944(28) [29]
-0.0929(9)[31]
-0.0954[23]

-0.084(4)[18]

-0.075(20)[25]
-0.0565[23]

−0.0547(10)[18]

ε212063373ε2 0
Template:Math 1 1.33(5) [32]
4/3
0.8(1),[21]
0.80(5),[32]
0.872(7) [25]
0.875(1)[28]
0.8765(18)[33]
0.8960[23]
0.8764(12)[34]
0.8751(11) [35]
0.8762(12)[36]
0.8774(13)[37]

0.88(2)[18]

0.6782(50)[25]
0.689(10)[29]

0.6920 [23]
0.693 [38]
0.6852(28) [37]
0.6845(23) [39]
0.6845(6)[40]
0.686(2)[18]

0.51(5) [41]
0.569(5) cited in [37]
0.571(3) [25]
0.5746 [23]

0.5723(18) [37]
0.5737(33) [39]
0.5757(7) [40]
0.5739(1) [18]

12+584ε+589223373ε2 1/2
Template:Math 1 36/91 0.42(6) [42]

0.445(10) [28]
0.4522(8) [29]
0.4524(6)[36]
0.4419[23]
0.452(7) [18]

0.476(5)
0.4742[23]

0.4789(14) [18]

0.496(4)
0.4933[23]

0.49396(13) [18]

12198ε2 1/2
Template:Math 2 187/91 2.186(2) [30]
2.1888[23]
2.189(2) [28]
2.190(2) [31]
2.189(1) [43]
2.18906(8)[29]
2.18909(5)[36]

2.1892(1)[44]
2.1938(12) [18]

2.26[27]
2.313(3)[45]
2.3127(6)[29]
2.313(2)[31]
2.3124[23]
2.3142(5)[44]

2.3150(8) [18]

2.33[27]
2.412(4)[45]
2.4171[23]
2.419(1)[44]

2.4175(2) [18]

52ε14+313233273ε2 5/2
df 1 91/48 2.523(4) [28]Template:Ref
2.530(4) [30]Template:Ref
2.5230(1) [33]
2.5226(1) [46]
2.52293(10) [36]
3.12(2),[41] 3.05(5), 3.003 [38]
3.0472(14)[29]
3.046(7)[45]
3.046(5)[31]
3.0479 [23]
3.0437(11)[44]
3.0446(7) [39]
3.54(4)
3.69(2)[41]
3.528 [23]
3.524(2)[44]
3.5260(14)[39]
41021ε+1033373ε2 4
Template:Math 0.70(2) [31]
0.77(4) [47]
0.77(2) [48]
72/91 [49][50]
0.44(9) [1]
0.50(9) [25]
0.64(2) [28]
0.73(8) [30]
0.65(2) [51]
0.60(8) [31]

0.77(3) [44]
0.64(5)[33]

0.31(5) [25]
0.5(1) [31]
0.37(4) [29]
0.4008 [23]
0.27(7) [25]
0.2034[23]
0.210(2) [18]
ε4283223272ε2
Template:Math 3/2 [49] 1.26(23) [25]
1.6334[23]
1.62(13)[33]
1.61(5)[28]
0.94(15) [25]
1.2198[23]
1.13(10) [29]
1.0(2) [52]
0.96(26) [25]
0.7178[23]
ε67123272ε2 [53][23] 0
t=t/ν 0.9479 [54]
0.995(1) [55]
0.977(8)) [56]
0.9825(8) [4]
2.276(12) [57]
2.26(4) [58]
2.305(15) [59]
2.283(3) [52]
3
dw 2.8784(8) [4]
ds 4/3 [54]
1.327(1) [55]
1.3100(11) [4]
1.32(6) [60]
dsurf 2/3 [61][62] 1.04(5)[10]
1.030(6) [63]
1.0246(4) [64]
1.32(7)[65] 1.65(3) [65] 2521ε [65] 2 [65]
βsurf/ν=x1 1/3 [61] 0.98(2)[66]
0.970(6)[63]
0.975(4) [67]
0.9754(4) [64]
0.974(2)[68]
1.64(2) [68] 2.408(5) [68] 3
η (surf) 2/3 [61] 1.02(12) [65]
1.08(10)[10]
1.37(13) [65] 1.7(6) [65]
db 1.60(5) [2]
1.64(1) [69]
1.647(4) [3]
1.6432(8) [4]
1.6434(2) [70]

1.64336(10) [71]
1.64333316328711...* [6]

1.8, 1.77(7)[2]

1.855(15)[72]

1.95(5) [73]
1.9844(11) [39]
2.00(5)[73]
2.0226(27) [39]
2
dmin=z 1.132(2)[74]

1.130(3) [75]
1.1307(4) [3]
1.1303(8)[76]
1.1306(3) [4]
1.130 77(2) [77]

1.35(5)[2]

1.34(1) [75]
1.374(6)[63]
1.3756(6) [77]
1.3756(3) [34]
1.3755(3) [36]

1.607(5) [45]

1.6042(5) [39]

1.812(6) [45]

1.8137(16) [39]

2
λ=μ+1 2.1055(10)[78]
2.1056(3)[5]
2.1045(10)[79]
2.105[80]
  • For d=2, db=2(z21)/12 where z satisfies 3z/4+sin(2πz/3)=0 near z=2.3.[6]

Exponents for protected percolation

In protected percolation, bonds are removed one at a time only from the percolating cluster. Isolated clusters are no longer modified. Scaling relations: β=β/(1+β), γ=γ/(1+β), ν=ν/(1+β), τ=τ where the primed quantities indicated protected percolation [24]

Template:Math Template:Math Template:Math Template:Math Template:Math Template:Math Template:Math Template:Math
Template:Math 5/41 [24] 0.288 71(15)[24]
Template:Math 86/41 [24] 1.3066(19)[24]
Template:Math 187/91[24] 2.1659(21)[24]

Exponents for standard percolation on a non-trivial planar lattice (Weighted planar stochastic lattice (WPSL))

WPSL Exponents
d 2
ν 1.635
β 0.222
γ 2.825
τ 2.072
df 1.864

Note that it has been claimed that the numerical values of exponents of percolation depend only on the dimension of lattice. However, percolation on WPSL is an exception in the sense that albeit it is two dimensional yet it does not belong to the same universality where all the planar lattices belong.[81][82]

Exponents for directed percolation

Directed percolation (DP) refers to percolation in which the fluid can flow only in one direction along bonds—such as only in the downward direction on a square lattice rotated by 45 degrees. This system is referred to as "1 + 1 dimensional DP" where the two dimensions are thought of as space and time.

ν and ν are the transverse (perpendicular) and longitudinal (parallel) correlation length exponents, respectively. Also ζ=1/z=ν/ν. It satisfies the hyperscaling relation d/z=η+2δ.

Another convention has been used for the exponent z, which here we call z, is defined through the relation R2tz, so that z=ν/ν=2/z.[83] It satisfies the hyperscaling relation dz=2η+4δ.

δ is the exponent corresponding to the behavior of the survival probability as a function of time: P(t)tδ.

η (sometimes called μ) is the exponent corresponding to the behavior of the average number of visited sites at time t (averaged over all samples including ones that have stopped spreading): N(t)tη.

The d(space)+1(time) dimensional exponents are given below.

Template:Math Template:Math Template:Math Template:Math Template:Math [84] Template:Math
Template:Math 0.276486(8) [85]
0.276 7(3) [86]
0.5834(30) [87]
0.580(4)[86]
0.813(9) [88]
0.818(4)[86]
0.82205[84]
1ε6 1
Template:Math 0.159464(6) [85]
0.15944(2)[86]
0.4505(1) [87]
0.451(3)[83]
0.4509(5) [89]
0.4510(4) [86]

0.460(6)[90]

0.732(4) [91]
0.7398(10) [86]
0.73717 [92]
1ε4 1
Template:Math 0.313686(8) [85]
0.31370(5) [86]
0.2303(4) [89]
0.2307(2) [86]
0.2295(10) [87]

0.229(3) [83]
0.214(8) [90]

0.1057(3)[86]
0.114(4) [88]
0.12084 [92]
Template:Math 1.733847(6) [85]
1.733825(25) [93]

1.7355(15) [86] 1.73(2)[94]

1.16(5)[94]
1.287(2) [86]
1.295(6) [83]
1.106(3) [86]
1.11(1) [88]
1.10571 [92]
Template:Math 1.096854(4) [85]

1.096844(14) [93]
1.0979(10) [86]

0.7333(75) [91]
0.729(1) [86]
0.584(5) [91]
0.582(2) [86]
0.58360 [92]
12+ε16 12
Template:Math 1.580745(10) [85]
1.5807(2) [86]
1.7660(16)[91]
1.765(3)[83]
1.766(2) [87]
1.7665(2) [86]
1.7666(10) [89]
1.88746 [92]
1.8990(4) [86]
1.901(5) [91]
2ε12 2
Template:Math 2.277730(5) = 41/18?,[85]
2.278(2) [95]
1.595(18) [87]
1.237(23) [88]
1
Template:Math 2.112(5),[96]
2.1077(13),[97]
2.10825(8) [85]

Scaling relations for directed percolation

β=τ2σ

γ=3τσ

τ=2+21+γ/β [97]

τ~=νβ [85]

η=γ/ν1

dDP=2β/ν [98]


db,DP=22β/ν[98]

Δ=β+γ

dz=2η+4δ

d/z=η+2δ

Exponents for dynamic percolation

For dynamic percolation (epidemic growth of ordinary percolation clusters), we have

P(t)Lβ/ν(t1/dmin)β/ν=tδ, implying


δ=βνdmin=ddfdmin

For N(t)tη, consider N(s)s3τRdf(3τ)tdf(3τ)/dmin, and taking the derivative with respect to t yields N(t)tdf(3τ)/dmin1, implying

η=df(3τ)dmin1=2dfddmin1

Also, z=dmin

Using exponents above, we find

Template:Math Template:Math Template:Math Template:Math Template:Math Template:Math Template:Math
Template:Math 0.09212 0.34681 0.59556 0.8127 1
Template:Math 0.584466 0.48725 0.30233 0.1314 0

See also

Notes

Template:Reflist

References

Template:Reflist

Further reading

  1. 1.0 1.1 Template:Cite book
  2. 2.0 2.1 2.2 2.3 Template:Cite journal
  3. 3.0 3.1 3.2 Template:Cite journal
  4. 4.0 4.1 4.2 4.3 4.4 4.5 Template:Cite journal
  5. 5.0 5.1 Template:Cite journal
  6. 6.0 6.1 6.2 Template:Cite arXiv
  7. Template:Cite journal
  8. Template:Cite journal
  9. 9.0 9.1 Template:Cite thesis
  10. 10.0 10.1 10.2 10.3 10.4 Template:Cite journal
  11. 11.0 11.1 11.2 11.3 11.4 Template:Cite book
  12. Template:Cite journal
  13. Template:Cite journal
  14. Template:Cite journal
  15. Template:Cite journal
  16. Template:Cite journal
  17. Template:Cite journal
  18. 18.00 18.01 18.02 18.03 18.04 18.05 18.06 18.07 18.08 18.09 18.10 18.11 18.12 18.13 18.14 18.15 18.16 18.17 18.18 18.19 18.20 18.21 18.22 18.23 18.24 Cite error: Invalid <ref> tag; no text was provided for refs named BorinskyGraceyKompanietsSchnetz21
  19. Template:Cite journal
  20. 20.0 20.1 20.2 20.3 20.4 20.5 Template:Cite journal
  21. 21.0 21.1 21.2 Template:Cite journal
  22. Template:Cite journal
  23. 23.00 23.01 23.02 23.03 23.04 23.05 23.06 23.07 23.08 23.09 23.10 23.11 23.12 23.13 23.14 23.15 23.16 23.17 23.18 23.19 23.20 23.21 23.22 23.23 23.24 23.25 Template:Cite journal
  24. 24.0 24.1 24.2 24.3 24.4 24.5 24.6 24.7 24.8 Template:Cite journal
  25. 25.00 25.01 25.02 25.03 25.04 25.05 25.06 25.07 25.08 25.09 25.10 25.11 25.12 25.13 25.14 25.15 25.16 Template:Cite journal
  26. 26.0 26.1 26.2 Template:Cite journal
  27. 27.0 27.1 27.2 27.3 27.4 27.5 Template:Cite journal
  28. 28.0 28.1 28.2 28.3 28.4 28.5 28.6 28.7 Template:Cite journal
  29. 29.0 29.1 29.2 29.3 29.4 29.5 29.6 29.7 29.8 Template:Cite journal
  30. 30.0 30.1 30.2 30.3 Template:Cite journal
  31. 31.0 31.1 31.2 31.3 31.4 31.5 31.6 Template:Cite journal
  32. 32.0 32.1 Template:Cite journal,
  33. 33.0 33.1 33.2 33.3 Template:Cite journal
  34. 34.0 34.1 Template:Cite journal,
  35. Template:Cite journal
  36. 36.0 36.1 36.2 36.3 36.4 Template:Cite journal
  37. 37.0 37.1 37.2 37.3 Template:Cite journal
  38. 38.0 38.1 Template:Cite journal
  39. 39.0 39.1 39.2 39.3 39.4 39.5 39.6 39.7 Template:Cite journal
  40. 40.0 40.1 Template:Cite journal
  41. 41.0 41.1 41.2 Template:Cite journal
  42. Template:Cite journal
  43. Template:Cite journal
  44. 44.0 44.1 44.2 44.3 44.4 44.5 Template:Cite journal
  45. 45.0 45.1 45.2 45.3 45.4 Template:Cite journal
  46. Template:Cite journal
  47. Template:Cite journal
  48. Template:Cite journal
  49. 49.0 49.1 Template:Cite journal
  50. Template:Cite journal
  51. Template:Cite journal
  52. 52.0 52.1 Template:Cite journal
  53. Template:Cite journal
  54. 54.0 54.1 Template:Cite journal
  55. 55.0 55.1 Template:Cite journal
  56. Template:Cite journal
  57. Template:Cite journal
  58. Template:Cite journal
  59. Template:Cite journal
  60. Template:Cite journal
  61. 61.0 61.1 61.2 Template:Cite journal
  62. Template:Cite journal
  63. 63.0 63.1 63.2 Template:Cite journal
  64. 64.0 64.1 Template:Cite journal
  65. 65.0 65.1 65.2 65.3 65.4 65.5 65.6 Template:Cite journal
  66. Template:Cite journal
  67. Template:Cite journal
  68. 68.0 68.1 68.2 Template:Cite journal
  69. Template:Cite journal
  70. Template:Cite journal
  71. Template:Cite journal
  72. Template:Cite journal
  73. 73.0 73.1 Template:Cite journal
  74. Template:Cite journal
  75. 75.0 75.1 Template:Cite journal
  76. Template:Cite journal
  77. 77.0 77.1 Template:Cite journal
  78. Template:Cite journal
  79. Template:Cite journal
  80. Template:Cite journal
  81. Template:Cite journal
  82. Template:Cite journal
  83. 83.0 83.1 83.2 83.3 83.4 Template:Cite journal
  84. 84.0 84.1 Template:Cite journal
  85. 85.0 85.1 85.2 85.3 85.4 85.5 85.6 85.7 85.8 Template:Cite journal
  86. 86.00 86.01 86.02 86.03 86.04 86.05 86.06 86.07 86.08 86.09 86.10 86.11 86.12 86.13 86.14 86.15 86.16 86.17 Template:Cite journal
  87. 87.0 87.1 87.2 87.3 87.4 Template:Cite journal
  88. 88.0 88.1 88.2 88.3 Template:Cite journal
  89. 89.0 89.1 89.2 Template:Cite journal
  90. 90.0 90.1 Template:Cite journal
  91. 91.0 91.1 91.2 91.3 91.4 Template:Cite book
  92. 92.0 92.1 92.2 92.3 92.4 Template:Cite journal
  93. 93.0 93.1 Template:Cite journal
  94. 94.0 94.1 Template:Cite journal
  95. Template:Cite journal
  96. Template:Cite journal
  97. 97.0 97.1 Template:Cite journal
  98. 98.0 98.1 Template:Cite journal