Overlapping interval topology

From testwiki
Jump to navigation Jump to search

Template:Distinguish

In mathematics, the overlapping interval topology is a topology which is used to illustrate various topological principles.

Definition

Given the closed interval [1,1] of the real number line, the open sets of the topology are generated from the half-open intervals (a,1] with a<0 and [1,b) with b>0. The topology therefore consists of intervals of the form [1,b), (a,b), and (a,1] with a<0<b, together with [1,1] itself and the empty set.

Properties

Any two distinct points in [1,1] are topologically distinguishable under the overlapping interval topology as one can always find an open set containing one but not the other point. However, every non-empty open set contains the point 0 which can therefore not be separated from any other point in [1,1], making [1,1] with the overlapping interval topology an example of a T0 space that is not a T1 space.

The overlapping interval topology is second countable, with a countable basis being given by the intervals [1,s), (r,s) and (r,1] with r<0<s and r and s rational.

See also

References