List of nonlinear ordinary differential equations

From testwiki
Jump to navigation Jump to search

Template:Differential equations

Template:Short description Differential equations are prominent in many scientific areas. Nonlinear ones are of particular interest for their commonality in describing real-world systems and how much more difficult they are to solve compared to linear differential equations. This list presents nonlinear ordinary differential equations that have been named, sorted by area of interest.

Mathematics

Name Order Equation Application Reference
Abel's differential equation of the first kind 1 dydx=fo(x)+f1(x)y+f2(x)y2+f3(x)y3 Class of differential equation which may be solved implicitly [1]
Abel's differential equation of the second kind 1 (go(x)+g1(x)y)dydx=fo(x)+f1(x)y+f2(x)y2+f3(x)y3 Class of differential equation which may be solved implicitly [1]
Bernoulli equation 1 dydx+P(x)y=Q(x)yn Class of differential equation which may be solved exactly [2]
Binomial differential equation m (y)m=f(x,y) Class of differential equation which may sometimes be solved exactly [3]
Briot-Bouquet Equation 1 xmy=f(x,y) Class of differential equation which may sometimes be solved exactly [4]
Cherwell-Wright differential equation 1 dxdt=(ax(t1))x(t) or the related form f(x)=f(x)f(x)2x An example of a nonlinear delay differential equation; applications in number theory, distribution of primes, and control theory [5][6][7]
Chrystal's equation 1 (dydx)2+Axdydx+By+Cx2=0 Generalization of Clairaut's equation with a singular solution [8]
Clairaut's equation 1 y=xdydx+f(dydx) Particular case of d'Alembert's equation which may be solved exactly [9]
d'Alembert's equation or Lagrange's equation 1 y=xf(dydx)+g(dydx) May be solved exactly [10]
Darboux equation 1 dydx=P(x,y)+yR(x,y)Q(x,y)+xR(x,y) Can be reduced to a Bernoulli differential equation; a general case of the Jacobi equation [11]
Elliptic function 1 y=(1y2)(1k2y2) Equation for which the elliptic functions are solutions [12]
Euler's differential equation 1 dydx+a0+a1y+a2y2+a3y3+a4y4a0+a1x+a2x2+a3x3+a4x4=0 A separable differential equation [13]
Euler's differential equation 1 y+y'2=αxm A differential equation which may be solved with Bessel functions [13]
Jacobi equation 1 dydx=Axy+By2+ax+by+cAx2+Bxy+αx+βy+γ Special case of the Darboux equation, integrable in closed form [14]
Loewner differential equation 1 dwdt=wpt(w) Important in complex analysis and geometric function theory [15]
Logistic differential equation (sometimes known as the Verhulst model) 2 ddxf(x)=f(x)(1f(x)) Special case of the Bernoulli differential equation; many applications including in population dynamics [16]
Lorenz attractor 1 dxdt=σ(yx)dydt=x(ρz)ydzdt=xyβz Chaos theory, dynamical systems, meteorology [17]
Nahm equations 1 dT1dz=[T2,T3]dT2dz=[T3,T1]dT3dz=[T1,T2] Differential geometry, gauge theory, mathematical physics, magnetic monopoles [18]
Painlevé I transcendent 2 d2ydt2=6y2+t One of fifty classes of differential equation of the form y=R(y,y,t); the six Painlevé transcendents required new special functions to solve [19]
Painlevé II transcendent 2 d2ydt2=2y3+ty+α One of fifty classes of differential equation of the form y=R(y,y,t); the six Painlevé transcendents required new special functions to solve [19]
Painlevé III transcendent 2 tyd2ydt2=t(dydt)2ydydt+δt+βy+αy3+γty4 One of fifty classes of differential equation of the form y=R(y,y,t); the six Painlevé transcendents required new special functions to solve [19]
Painlevé IV transcendent 2 yd2ydt2=12(dydt)2+β+2(t2α)y2+4ty3+32y4 One of fifty classes of differential equation of the form y=R(y,y,t); the six Painlevé transcendents required new special functions to solve [19]
Painlevé V transcendent 2 d2ydt2=(12y+1y1)(dydt)21tdydt+(y1)2t2(αy+βy)+γyt+δy(y+1)y1 One of fifty classes of differential equation of the form y=R(y,y,t); the six Painlevé transcendents required new special functions to solve [19]
Painlevé VI transcendent 2 d2ydt2=12(1y+1y1+1yt)(dydt)2(1t+1t1+1yt)dydt+y(y1)(yt)t2(t1)2(α+βty2+γt1(y1)2+δt(t1)(yt)2) All of the other Painlevé transcendents are degenerations of the sixth [19]
Rabinovich–Fabrikant equations 1 x˙=y(z1+x2)+γxy˙=x(3z+1x2)+γyz˙=2z(α+xy) Chaos theory, dynamical systems [20]
Riccati equation 1 dydx+Q(x)y+R(x)y2=P(x) Class of first order differential equations that is quadratic in the unknown. Can reduce to Bernoulli differential equation or linear differential equation in certain cases [21]
Rössler attractor 1 dxdt=yzdydt=x+aydzdt=b+z(xc) Chaos theory, dynamical systems [22]

Physics

Name Order Equation Applications Reference
Bellman's equation or Emden-Fowler's equation 2 ddt(tρdudt)=tσuρ (Emden-Fowler) which reduces to d2udx2=ϕ2up if σ+ρ=0 (Bellman) Diffusion in a slab [23]
Besant-Rayleigh-Plesset equation 2 Rd2Rdt2+32(dRdt)2+4νLRdRdt+2σρLR+ΔP(t)ρ=0 Spherical bubble in fluid dynamics [24]
Blasius equation 3 d3ydx3+yd2ydx2=0 Blasius boundary layer [25]
Chandrasekhar's white dwarf equation 2 1x2ddx(x2dydx)+(y2c)3/2=0 Gravitational potential of white dwarf in astrophysics [26]
De Boer-Ludford equation 2 d2ydx2xy=y|y|α, α>0 Plasma physics [27]
Emden–Chandrasekhar equation 2 1ξ2ddξ(ξ2dψdξ)=eψ Astrophysics [26]
Ermakov-Pinney equation 2 x¨+ω2x=h2x3 Electromagnetism, oscillation, scalar field cosmologies [28][29]
Falkner–Skan equation 3 d3ydx3+yd2ydx2+β[1(dydx)2]=0 Falkner–Skan boundary layer [30]
Friedmann equations 2 a¨a=4πG3(ρ+3pc2)+Λc23 and a˙2+kc2a2=8πGρ+Λc23 Physical cosmology [31]
Heisenberg equation of motion 1 dA(t)^dt=i[^,A^] Quantum mechanics [32]
Ivey's equation 2 d2ydx21y(dydx)2+2xdydx+ky2=0 Space charge theory [33]
Kidder equation 2 1αyd2ydx2+2xdydx=0, 0α1 Flow through porous medium [34]
Krogdahl equation 2 d2Qdτ2=Q+23λQ2+1427λ2Q3+μ(1Q2)dQdτ+23λ(1λQ)(dQdτ)2+ Stellar pulsation in astrophysics [35]
Lagerstrom equation 2 y+kry+ϵyy=0 One dimensional viscous flow at low Reynolds numbers [36]
Lane–Emden equation or polytropic differential equation 2 1ξ2ddξ(ξ2dθdξ)+θn=0 Astrophysics [37]
Liñán's equation 2 d2ydζ2=(y2ζ2)eδ1/3(y+γζ) Combustion [38]
Pendulum equation 2 d2θdt2+gsinθ=0 Mechanics [39]
Poisson–Boltzmann equation (1d case) 2 d2θdz2+kzdθdz=δeθ Inflammability and the theory of thermal explosions [40]
Stuart–Landau equation 1 dAdt=σAl2A|A|2 Hydrodynamic stability [41]
Taylor–Maccoll equation 2 (c2f'2)f+c2cotθf+(2c2f'2)f=0,c=c(f2+f'2) where f=dfdθ Flow behind a conical shock wave [42]
Thomas–Fermi equation 2 d2ydx2=1xy3/2 Quantum mechanics[43] [44]
Toda lattice 1 a˙(n,t)=a(n,t)(b(n+1,t)b(n,t))b˙(n,t)=2(a(n,t)2a(n1,t)2)where a(n,t)=12e(q(n+1,t)q(n,t))/2b(n,t)=12p(n,t) Model of one-dimensional crystal in solid-state physics, Langmuir oscillations in plasma, quantum cohomology; notable for being a completely integrable system [45]
Trachenko-Zaccone 1 dydt=yτexp(Ky) Condensed matter physics; relaxation in amorphous solids and glass transition [46][47]

Engineering

Name Order Equation Applications Reference
Duffing equation 2 d2xdt2+μdxdt+αx+βx3=γcosωt Oscillators, hysteresis, chaotic dynamical systems [48]
Lewis regulator 2 y+(1|y|)y+y=0 Oscillators [49]
Liénard equation 2 d2xdt2+f(x)dxdt+g(x)=0 with f odd and g even Oscillators, electrical engineering, dynamical systems [50]
Rayleigh equation 2 y+F(y)+y=0 Oscillators (especially auto-oscillation), acoustics; the Van der Pol equation is a Rayleigh equation [51]
Van der Pol equation 2 d2xdt2μ(1x2)dxdt+x=0 Oscillators, electrical engineering, chaotic dynamical systems [52]

Chemistry

Name Order Equation Applications Reference
Brusselator 1 ddt{X}={A}+{X}2{Y}{B}{X}{X}ddt{Y}={B}{X}{X}2{Y} A type of autocatalytic reaction modelled at constant concentration [53]
Oregonator 1 d[X]dt=kI[A][Y]kII[X][Y]+kIII[A][X]2kIV[X]2d[Y]dt=kI[A][Y]kII[X][Y]+12fkV[B][Z]d[Z]dt=2kIII[A][X]kV[B][Z] A type of autocatalytic reaction modelled at constant concentration [54]

Biology and medicine

Name Order Equation Applications Reference
Allee effect 1 dNdt=rN(1NA)(1NK) Population biology [55]
Arditi–Ginzburg equations 1 dNdt=f(N)Ng(NP)PdPdt=eg(NP)PuP Population dynamics [56]
FitzHugh–Nagumo model or Bonhoeffer-van der Pol model 1 v˙=vv33w+RIextτw˙=v+abw Action potentials in neurons, oscillators [57]
Hodgkin-Huxley equations 1 I=CmdVmdt+g¯Kn4(VmVK)+g¯Nam3h(VmVNa)+g¯l(VmVl)dndt=αn(Vm)(1n)βn(Vm)ndmdt=αm(Vm)(1m)βm(Vm)mdhdt=αh(Vm)(1h)βh(Vm)h Action potentials in neurons [58]
Kuramoto model 1 dθidt=ωi+1Nj=1NKijsin(θjθi),i=1N Synchronization, coupled oscillators [59]
Lotka–Volterra equations 1 dxdt=αxβxydydt=δxyγy Population dynamics [60]
Price equation 1 ddt𝔼(x)=Cov(x,f)Selection effect+𝔼(x˙)Dynamic effect Evolution and change in allele frequency over time [61]
SIR model 1 dSdt=βSIdIdt=βSIγIdRdt=γI Epidemiology [62]

Economics and finance

Name Order Equation Applications Reference
Bass diffusion model 1 dFdt=(1F)(p+qF) A Riccati equation used in marketing to describe product adoption [63]
Ramsey–Cass–Koopmans model 1 k˙=f(k)(n+δ)kcc˙=σ(c)[fk(k)δρ]c Neoclassical economics model of economic growth [64][65]
Solow–Swan model 1 k˙(t)=sk(t)α(n+g+δ)k(t) Model of long run economic growth [66]

See also

References

Template:ReflistTemplate:Differential equations topics

  1. 1.0 1.1 Template:Cite journal
  2. Template:Cite web
  3. Template:Cite book
  4. Template:Cite web
  5. Template:Cite book
  6. Template:Cite journal
  7. Template:Cite journal
  8. Template:Cite journal
  9. Template:Cite web
  10. Template:Cite web
  11. Template:Cite web
  12. Template:Cite book
  13. 13.0 13.1 Template:Cite web
  14. Template:Cite web
  15. Template:Cite journal
  16. Template:Cite web
  17. Template:Cite journal
  18. Template:Cite journal
  19. 19.0 19.1 19.2 19.3 19.4 19.5 Template:Cite web
  20. Template:Cite journal
  21. Template:Cite web
  22. Template:Citation
  23. Template:Cite journal
  24. Template:Cite journal
  25. Template:Cite journal
  26. 26.0 26.1 Template:Cite book
  27. Template:Cite journal
  28. Template:Cite arXiv
  29. Template:Cite journal
  30. Template:Cite journal
  31. Template:Cite journal
  32. Template:Cite web
  33. Template:Cite journal
  34. Template:Cite journal
  35. Template:Cite journal
  36. Template:Cite journal
  37. Template:Cite journal
  38. Template:Cite journal
  39. Template:Cite journal
  40. Template:Cite journal
  41. Template:Citation
  42. Template:Cite journal
  43. Davis, Harold Thayer. Introduction to nonlinear differential and integral equations. Courier Corporation, 1962.
  44. Template:Cite journal
  45. Template:Citation
  46. Template:Cite journal
  47. Template:Cite journal
  48. Template:Cite web
  49. Template:Cite book
  50. Template:Cite journal
  51. Template:Cite web
  52. Template:Cite web
  53. Template:Cite journal
  54. Template:Cite journal
  55. Template:Cite journal
  56. Template:Cite journal
  57. Template:Citation
  58. Template:Cite journal
  59. Template:Cite journal
  60. Template:Cite web
  61. Template:Cite journal
  62. Template:Cite journal
  63. Template:Cite journal
  64. Template:Cite book
  65. Template:Cite book
  66. Template:Cite book