Great inverted snub icosidodecahedron
Template:Short description Template:Uniform polyhedra db File:Great inverted snub icosidodecahedron.stl In geometry, the great inverted snub icosidodecahedron (or great vertisnub icosidodecahedron) is a uniform star polyhedron, indexed as U69. It is given a Schläfli symbol Template:Math and Coxeter-Dynkin diagram Template:CDD. In the book Polyhedron Models by Magnus Wenninger, the polyhedron is misnamed great snub icosidodecahedron, and vice versa.
Cartesian coordinates
Let be the largest (least negative) negative zero of the polynomial , where is the golden ratio. Let the point be given by
- .
Let the matrix be given by
- .
is the rotation around the axis by an angle of , counterclockwise. Let the linear transformations be the transformations which send a point to the even permutations of with an even number of minus signs. The transformations constitute the group of rotational symmetries of a regular tetrahedron. The transformations , constitute the group of rotational symmetries of a regular icosahedron. Then the 60 points are the vertices of a great snub icosahedron. The edge length equals , the circumradius equals , and the midradius equals .
For a great snub icosidodecahedron whose edge length is 1, the circumradius is
Its midradius is
The four positive real roots of the sextic in Template:Math, are the circumradii of the snub dodecahedron (U29), great snub icosidodecahedron (U57), great inverted snub icosidodecahedron (U69), and great retrosnub icosidodecahedron (U74). Template:-
Related polyhedra
Great inverted pentagonal hexecontahedron
Template:Uniform polyhedra db File:Great inverted pentagonal hexecontahedron.stl The great inverted pentagonal hexecontahedron (or petaloidal trisicosahedron) is a nonconvex isohedral polyhedron. It is composed of 60 concave pentagonal faces, 150 edges and 92 vertices.
It is the dual of the uniform great inverted snub icosidodecahedron. Template:-
Proportions
Denote the golden ratio by . Let be the smallest positive zero of the polynomial . Then each pentagonal face has four equal angles of and one angle of . Each face has three long and two short edges. The ratio between the lengths of the long and the short edges is given by
- .
The dihedral angle equals . Part of each face lies inside the solid, hence is invisible in solid models. The other two zeroes of the polynomial play a similar role in the description of the great pentagonal hexecontahedron and the great pentagrammic hexecontahedron.
See also
References
- Template:Citation p. 126