Great pentagrammic hexecontahedron
Template:Short description Template:Uniform polyhedra db In geometry, the great pentagrammic hexecontahedron (or great dentoid ditriacontahedron) is a nonconvex isohedral polyhedron. It is the dual of the great retrosnub icosidodecahedron. Its 60 faces are irregular pentagrams. File:Great pentagrammic hexecontahedron.stl
Proportions
Denote the golden ratio by . Let be the largest positive zero of the polynomial . Then each pentagrammic face has four equal angles of and one angle of . Each face has three long and two short edges. The ratio between the lengths of the long and the short edges is given by
- .
The dihedral angle equals . Part of each face lies inside the solid, hence is invisible in solid models. The other two zeroes of the polynomial play a similar role in the description of the great pentagonal hexecontahedron and the great inverted pentagonal hexecontahedron.