Filter quantifier

From testwiki
Jump to navigation Jump to search

In mathematics, a filter on a set X informally gives a notion of which subsets AX are "large". Filter quantifiers are a type of logical quantifier which, informally, say whether or not a statement is true for "most" elements of X. Such quantifiers are often used in combinatorics, model theory (such as when dealing with ultraproducts), and in other fields of mathematical logic where (ultra)filters are used.

Background

Here we will use the set theory convention, where a filter on a set X is defined to be an order-theoretic proper filter in the poset (𝒫(X),), that is, a subset of 𝒫(X) such that:

  • and X;
  • For all A,B, we have AB;
  • For all ABX, if A then B.

Recall a filter on X is an ultrafilter if, for every AX, either A or XA.

Given a filter on a set X, we say a subset AX is -stationary if, for all B, we have AB.[1]

Definition

Let be a filter on a set X. We define the filter quantifiers x and x as formal logical symbols with the following interpretation:

x φ(x){xX:φ(x)}
x φ(x){xX:φ(x)} is -stationary

for every first-order formula φ(x) with one free variable. These also admit alternative definitions as

x φ(x)A  xA  φ(x)
x φ(x)A  xA  φ(x)

When is an ultrafilter, the two quantifiers defined above coincide, and we will often use the notation x instead. Verbally, we might pronounce x as "for -almost all x", "for -most x", "for the majority of x (according to )", or "for most x (according to )". In cases where the filter is clear, we might omit mention of .

Properties

The filter quantifiers x and x satisfy the following logical identities,[1] for all formulae φ,ψ:

  • Duality: x φ(x)¬x ¬φ(x)
  • Weakening: x φ(x)x φ(x)x φ(x)x φ(x)
  • Conjunction:
    • x (φ(x)ψ(x))(x φ(x))(x ψ(x))
    • x (φ(x)ψ(x))(x φ(x))(x ψ(x))
  • Disjunction:
    • x (φ(x)ψ(x))(x φ(x))(x ψ(x))
    • x (φ(x)ψ(x))(x φ(x))(x ψ(x))
  • If 𝒢 are filters on X, then:
    • x φ(x)𝒢x φ(x)
    • x φ(x)𝒢x φ(x)

Additionally, if is an ultrafilter, the two filter quantifiers coincide: x φ(x)x φ(x).Template:Citation needed Renaming this quantifier x, the following properties hold:

  • Negation: x φ(x)¬x ¬φ(x)
  • Weakening: x φ(x)x φ(x)x φ(x)
  • Conjunction: x (φ(x)ψ(x))(x φ(x))(x ψ(x))
  • Disjunction: x (φ(x)ψ(x))(x φ(x))(x ψ(x))

In general, filter quantifiers do not commute with each other, nor with the usual and quantifiers.Template:Citation needed

Examples

  • If ={X} is the trivial filter on X, then unpacking the definition, we have x φ(x){xX:φ(x)}=X, and x φ(x){xX:φ(x)}X. This recovers the usual and quantifiers.
  • Let be the Fréchet filter on an infinite set X, Then, x φ(x) holds iff φ(x) holds for cofinitely many xX, and x φ(x) holds iff φ(x) holds for infinitely many xX. The quantifiers and are more commonly denoted and , respectively.
  • Let be the "measure filter" on [0,1], generated by all subsets A[0,1] with Lebesgue measure μ(A)=1. The above construction gives us "measure quantifiers": x φ(x) holds iff φ(x) holds almost everywhere, and x φ(x) holds iff φ(x) holds on a set of positive measure.[2]
  • Suppose A is the principal filter on some set AX. Then, we have Ax φ(x)xA φ(x), and Ax φ(x)xA φ(x).

Use

The utility of filter quantifiers is that they often give a more concise or clear way to express certain mathematical ideas. For example, take the definition of convergence of a real-valued sequence: a sequence (an)n converges to a point a if

ε>0  N  n ( nN|ana|<ε )

Using the Fréchet quantifier as defined above, we can give a nicer (equivalent) definition:

ε>0  n: |ana|<ε

Filter quantifiers are especially useful in constructions involving filters. As an example, suppose that X has a binary operation + defined on it. There is a natural way to extend[3] + to βX, the set of ultrafilters on X:[4]

𝒰𝒱={AX: 𝒰x 𝒱y  x+yA}

With an understanding of the ultrafilter quantifier, this definition is reasonably intuitive. It says that 𝒰𝒱 is the collection of subsets AX such that, for most x (according to 𝒰) and for most y (according to 𝒱), the sum x+y is in A. Compare this to the equivalent definition without ultrafilter quantifiers:

𝒰𝒱={AX: {xX: {yX: x+yA}𝒱}𝒰}

The meaning of this is much less clear.

This increased intuition is also evident in proofs involving ultrafilters. For example, if + is associative on X, using the first definition of , it trivially follows that is associative on βX. Proving this using the second definition takes a lot more work.[5]

See also

References

Template:Reflist

  1. 1.0 1.1 Template:Cite web
  2. Template:Cite web
  3. This is an extension of + in the sense that we can consider X as a subset of βX by mapping each xX to the principal ultrafilter 𝒰x on x. Then, we have 𝒰x𝒰y=𝒰(x+y).
  4. Template:Cite web
  5. Template:Cite book