Bitruncated 24-cell honeycomb

From testwiki
Revision as of 19:39, 26 December 2017 by imported>J04n (Removing link(s): Wikipedia:Articles for deletion/George Olshevsky closed as delete (XFDcloser))
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search
Bituncated 24-cell honeycomb
(No image)
Type Uniform 4-honeycomb
Schläfli symbol 2t{3,4,3,3}
Coxeter-Dynkin diagrams

Template:CDD

4-face type t{4,3,3}
2t{3,4,3}
Cell type t{4,3}
{3,3}
Face type {3}, {8}
Vertex figure
Coxeter groups F~4, [3,4,3,3]
Properties Vertex transitive

In four-dimensional Euclidean geometry, the bitruncated 24-cell honeycomb is a uniform space-filling honeycomb. It can be seen as a bitruncation of the regular 24-cell honeycomb, constructed by truncated tesseract and bitruncated 24-cell cells.

Alternate names

  • Bitruncated icositetrachoric tetracomb/honeycomb
  • Small tetracontaoctachoric tetracomb (baticot)

Template:F4 honeycombs

See also

Regular and uniform honeycombs in 4-space:

References

  • Coxeter, H.S.M. Regular Polytopes, (3rd edition, 1973), Dover edition, Template:ISBN p. 296, Table II: Regular honeycombs
  • Kaleidoscopes: Selected Writings of H.S.M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, Template:ISBN [1]
    • (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3-45]
  • George Olshevsky, Uniform Panoploid Tetracombs, Manuscript (2006) (Complete list of 11 convex uniform tilings, 28 convex uniform honeycombs, and 143 convex uniform tetracombs) Model 113
  • Template:KlitzingPolytopes o3o3x4x3o - baticot - O113

o3o3x4o3x - sricot - O112

Template:Navbar-collapsible
Space Family A~n1 C~n1 B~n1 D~n1 G~2 / F~4 / E~n1
E2 Uniform tiling 0[3] δ3 3 3 Hexagonal
E3 Uniform convex honeycomb 0[4] δ4 4 4
E4 Uniform 4-honeycomb 0[5] δ5 5 5 24-cell honeycomb
E5 Uniform 5-honeycomb 0[6] δ6 6 6
E6 Uniform 6-honeycomb 0[7] δ7 7 7 222
E7 Uniform 7-honeycomb 0[8] δ8 8 8 133331
E8 Uniform 8-honeycomb 0[9] δ9 9 9 152251521
E9 Uniform 9-honeycomb 0[10] δ10 10 10
E10 Uniform 10-honeycomb 0[11] δ11 11 11
En-1 Uniform (n-1)-honeycomb 0[n] δn n n 1k22k1k21