Omnitruncated 6-simplex honeycomb

From testwiki
Revision as of 19:32, 14 December 2021 by imported>Goomba1729 (That's the omnitruncated 7-simplex honeycomb)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search
Omnitruncated 6-simplex honeycomb
(No image)
Type Uniform honeycomb
Family Omnitruncated simplectic honeycomb
Schläfli symbol {3[8]}
Coxeter–Dynkin diagrams Template:CDD
Facets
t0,1,2,3,4,5{3,3,3,3,3}
Vertex figure
Irr. 6-simplex
Symmetry A~7×14, [7[3[7]]]
Properties vertex-transitive

In six-dimensional Euclidean geometry, the omnitruncated 6-simplex honeycomb is a space-filling tessellation (or honeycomb). It is composed entirely of omnitruncated 6-simplex facets.

The facets of all omnitruncated simplectic honeycombs are called permutahedra and can be positioned in n+1 space with integral coordinates, permutations of the whole numbers (0,1,..,n).

The ATemplate:Sup sub lattice (also called ATemplate:Sup sub) is the union of seven A6 lattices, and has the vertex arrangement of the dual to the omnitruncated 6-simplex honeycomb, and therefore the Voronoi cell of this lattice is the omnitruncated 6-simplex.

Template:CDDTemplate:CDDTemplate:CDDTemplate:CDDTemplate:CDDTemplate:CDDTemplate:CDD = dual of Template:CDD

Template:6-simplex honeycomb family

See also

Regular and uniform honeycombs in 6-space:

Notes

Template:Reflist

References

  • Norman Johnson Uniform Polytopes, Manuscript (1991)
  • Kaleidoscopes: Selected Writings of H.S.M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, Template:Isbn [1]
    • (Paper 22) H.S.M. Coxeter, Regular and Semi Regular Polytopes I, [Math. Zeit. 46 (1940) 380-407, MR 2,10] (1.9 Uniform space-fillings)
    • (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3-45]
Template:Navbar-collapsible
Space Family A~n1 C~n1 B~n1 D~n1 G~2 / F~4 / E~n1
E2 Uniform tiling 0[3] δ3 3 3 Hexagonal
E3 Uniform convex honeycomb 0[4] δ4 4 4
E4 Uniform 4-honeycomb 0[5] δ5 5 5 24-cell honeycomb
E5 Uniform 5-honeycomb 0[6] δ6 6 6
E6 Uniform 6-honeycomb 0[7] δ7 7 7 222
E7 Uniform 7-honeycomb 0[8] δ8 8 8 133331
E8 Uniform 8-honeycomb 0[9] δ9 9 9 152251521
E9 Uniform 9-honeycomb 0[10] δ10 10 10
E10 Uniform 10-honeycomb 0[11] δ11 11 11
En-1 Uniform (n-1)-honeycomb 0[n] δn n n 1k22k1k21