5-cubic honeycomb

From testwiki
Revision as of 22:36, 31 March 2024 by imported>Mazewaxie (WP:GENFIXES)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

Template:Short description

5-cubic honeycomb
(no image)
Type Regular 5-space honeycomb
Uniform 5-honeycomb
Family Hypercube honeycomb
Schläfli symbol Template:Math
Coxeter-Dynkin diagrams

Template:CDD
Template:CDD
Template:CDD
Template:CDD
Template:CDD
Template:CDD
Template:CDD
Template:CDD
Template:CDD
Template:CDD
Template:CDD
Template:CDD
Template:CDD
Template:CDD
Template:CDD

5-face type Template:Math (5-cube)
4-face type Template:Math (tesseract)
Cell type Template:Math (cube)
Face type Template:Math (square)
Face figure Template:Math (octahedron)
Edge figure Template:Math (16-cell)
Vertex figure Template:Math (5-orthoplex)
Coxeter group C~5
Template:Math
Dual self-dual
Properties vertex-transitive, edge-transitive, face-transitive, cell-transitive

In geometry, the 5-cubic honeycomb or penteractic honeycomb is the only regular space-filling tessellation (or honeycomb) in Euclidean 5-space. Four 5-cubes meet at each cubic cell, and it is more explicitly called an order-4 penteractic honeycomb.

It is analogous to the square tiling of the plane and to the cubic honeycomb of 3-space, and the tesseractic honeycomb of 4-space.

Constructions

There are many different Wythoff constructions of this honeycomb. The most symmetric form is regular, with Schläfli symbol {4,33,4}. Another form has two alternating 5-cube facets (like a checkerboard) with Schläfli symbol {4,3,3,31,1}. The lowest symmetry Wythoff construction has 32 types of facets around each vertex and a prismatic product Schläfli symbol {∞}(5).

The [4,33,4], Template:CDD, Coxeter group generates 63 permutations of uniform tessellations, 35 with unique symmetry and 34 with unique geometry. The expanded 5-cubic honeycomb is geometrically identical to the 5-cubic honeycomb.

The 5-cubic honeycomb can be alternated into the 5-demicubic honeycomb, replacing the 5-cubes with 5-demicubes, and the alternated gaps are filled by 5-orthoplex facets.

It is also related to the regular 6-cube which exists in 6-space with three 5-cubes on each cell. This could be considered as a tessellation on the 5-sphere, an order-3 penteractic honeycomb, {4,34}.

The Penrose tilings are 2-dimensional aperiodic tilings that can be obtained as a projection of the 5-cubic honeycomb along a 5-fold rotational axis of symmetry. The vertices correspond to points in the 5-dimensional cubic lattice, and the tiles are formed by connecting points in a predefined manner.[1]

Tritruncated 5-cubic honeycomb

A tritruncated 5-cubic honeycomb, Template:CDD, contains all bitruncated 5-orthoplex facets and is the Voronoi tessellation of the D5* lattice. Facets can be identically colored from a doubled C~5×2, [[4,33,4]] symmetry, alternately colored from C~5, [4,33,4] symmetry, three colors from B~5, [4,3,3,31,1] symmetry, and 4 colors from D~5, [31,1,3,31,1] symmetry.

See also

Regular and uniform honeycombs in 5-space:

References

Template:Reflist

Template:Navbar-collapsible
Space Family A~n1 C~n1 B~n1 D~n1 G~2 / F~4 / E~n1
E2 Uniform tiling 0[3] δ3 3 3 Hexagonal
E3 Uniform convex honeycomb 0[4] δ4 4 4
E4 Uniform 4-honeycomb 0[5] δ5 5 5 24-cell honeycomb
E5 Uniform 5-honeycomb 0[6] δ6 6 6
E6 Uniform 6-honeycomb 0[7] δ7 7 7 222
E7 Uniform 7-honeycomb 0[8] δ8 8 8 133331
E8 Uniform 8-honeycomb 0[9] δ9 9 9 152251521
E9 Uniform 9-honeycomb 0[10] δ10 10 10
E10 Uniform 10-honeycomb 0[11] δ11 11 11
En-1 Uniform (n-1)-honeycomb 0[n] δn n n 1k22k1k21