Glaisher–Kinkelin constant

From testwiki
Revision as of 21:49, 28 November 2024 by imported>Salix alba (Relation to special functions: fix math syntax bug with mixing <math> and mathml code)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

Template:Short description In mathematics, the Glaisher–Kinkelin constant or Glaisher's constant, typically denoted Template:Mvar, is a mathematical constant, related to special functions like the [[K-function|Template:Mvar-function]] and the [[Barnes G-function|Barnes Template:Mvar-function]]. The constant also appears in a number of sums and integrals, especially those involving the gamma function and the Riemann zeta function. It is named after mathematicians James Whitbread Lee Glaisher and Hermann Kinkelin.

Its approximate value is:

Template:Mvar = Template:Val...   Template:OEIS.

Glaisher's constant plays a role both in mathematics and in physics. It appears when giving a closed form expression for Porter's constant, when estimating the efficiency of the Euclidean algorithm. It also is connected to solutions of Painlevé differential equations and the Gaudin model.[1]

Definition

The Glaisher–Kinkelin constant Template:Mvar can be defined via the following limit:[2]

A=limnH(n)nn22+n2+112en24

where H(n) is the hyperfactorial:H(n)=i=1nii=112233...nnAn analogous limit, presenting a similarity between A and 2π, is given by Stirling's formula as:

2π=limnn!nn+12en

withn!=i=1ni=123...nwhich shows that just as π is obtained from approximation of the factorials, A is obtained from the approximation of the hyperfactorials.

Relation to special functions

Just as the factorials can be extended to the complex numbers by the gamma function such that Γ(n)=(n1)! for positive integers n, the hyperfactorials can be extended by the K-function[3] with K(n)=H(n1) also for positive integers n, where:

K(z)=(2π)z12exp[(z2)+0z1lnΓ(t+1)dt]

This gives:[1]

A=limnK(n+1)nn22+n2+112en24.

A related function is the [[Barnes G-function|Barnes Template:Mvar-function]] which is given by

G(n)=(Γ(n))n1K(n)

and for which a similar limit exists:[2]

1A=limnG(n+1)(2π)n2nn22112e3n24+112.

The Glaisher-Kinkelin constant also appears in the evaluation of the K-function and Barnes-G function at half and quarter integer values such as:[1][4]

K(1/2)=A3/221/24e1/8
K(1/4)=A9/8exp(G4π332)
G(1/2)=21/24e1/8A3/2π1/4
G(1/4)=129/16A9/8π3/16ϖ3/8exp(332G4π)

with G being Catalan's constant and ϖ=Γ(1/4)222π being the lemniscate constant.

Similar to the gamma function, there exists a multiplication formula for the K-Function. It involves Glaisher's constant:[5]

j=1n1K(jn)=An21nn112ne1n212n

The logarithm of G(z + 1) has the following asymptotic expansion, as established by Barnes:[6]

lnG(z+1)=z22lnz3z24+z2ln2π112lnz+(112lnA)+k=1NB2k+24k(k+1)z2k+O(1z2N+2)

The Glaisher-Kinkelin constant is related to the derivatives of the Euler-constant function:[5][7]

γ(1)=116ln2+6lnA32lnπ1
γ(1)=103ln2+24lnA4lnπ7ζ(3)2π2134

A also is related to the Lerch transcendent:[8]

Φs(1,1,1)=3lnA13ln214

Glaisher's constant may be used to give values of the derivative of the Riemann zeta function as closed form expressions, such as:[2][9]

ζ(1)=112lnA
ζ(2)=π26(γ+ln2π12lnA)

where Template:Mvar is the Euler–Mascheroni constant.

Series expressions

The above formula for ζ(2) gives the following series:[2]

k=2lnkk2=π26(12lnAγln2π)

which directly leads to the following product found by Glaisher:

k=1k1k2=(A122πeγ)π26

Similarly it is

k3k oddlnkk2=π224(36lnA3γln16π3)

which gives:

k3k oddk1k2=(A3616π3e3γ)π224

An alternative product formula, defined over the prime numbers, reads:[10]

p primep1p21=A122πeγ,

Another product is given by:[5]

k=1(enn(n+1)n)(1)n1=21/6eπA6

A series involving the cosine integral is:[11]

k=1Ci(2kπ)k2=π22(4lnA1)

Helmut Hasse gave another series representation for the logarithm of Glaisher's constant, following from a series for the Riemann zeta function:[8]

lnA=1812n=01n+1k=0n(1)k(nk)(k+1)2ln(k+1)

Integrals

The following are some definite integrals involving Glaisher's constant:[1]

0xlnxe2πx1dx=12412lnA
012lnΓ(x)dx=32lnA+524ln2+14lnπ

the latter being a special case of:[12]

0zlnΓ(x)dx=z(1z)2+z2ln2π+zlnΓ(z)lnG(1+z)

We further have:[13]0(1ex/2)(xcothx22)x3dx=3lnA13ln218and0(83x)ex8ex/2x4x2ex(ex1)dx=3lnA712ln2+12lnπ1A double integral is given by:[8]

0101x(1+xy)2lnxydxdy=6lnA16ln212lnπ12

Generalizations

The Glaisher-Kinkelin constant can be viewed as the first constant in a sequence of infinitely many so-called generalized Glaisher constants or Bendersky constants.[1] They emerge from studying the following product:m=1nmmk=11k22k33k...nnkSetting k=0 gives the factorial n!, while choosing k=1 gives the hyperfactorial H(n).

Defining the following functionPk(n)=(nk+1k+1+nk2+Bk+1k+1)lnnnk+1(k+1)2+k!j=1k1Bj+1(j+1)!nkj(kj)!(lnn+i=1j1ki+1)with the Bernoulli numbers Bk (and using B1=0), one may approximate the above products asymptotically via exp(Pk(n)).

For k=0 we get Stirling's approximation without the factor 2π as exp(P0(n))=nn+12en.

For k=1 we obtain exp(P1(n))=nn22+n2+112en24, similar as in the limit definition of A.

This leads to the following definition of the generalized Glaisher constants:

Ak:=limn(ePk(n)m=1nmmk)

which may also be written as:

lnAk:=limn(Pk(n)+m=1nmklnm)

This gives A0=2π and A1=A and in general:[1][14][15]

Ak=exp(Bk+1k+1Hkζ(k))

with the harmonic numbers Hk and H0=0.

Because of the formula

ζ(2m)=(1)m(2m)!2(2π)2mζ(2m+1)

for m>0, there exist closed form expressions for Ak with even k=2m in terms of the values of the Riemann zeta function such as:[1]

A2=exp(ζ(3)4π2)
A4=exp(3ζ(5)4π4)

For odd k=2m1 one can express the constants Ak in terms of the derivative of the Riemann zeta function such as:

A1=exp(ζ(2)2π2+γ+ln2π12)
A3=exp(3ζ(4)4π4γ+ln2π120)

The numerical values of the first few generalized Glaisher constants are given below:

k Value of Ak to 50 decimal digits OEIS
0 2.50662827463100050241576528481104525300698674060993... Template:OEIS link
1 1.28242712910062263687534256886979172776768892732500... Template:OEIS link
2 1.03091675219739211419331309646694229063319430640348... Template:OEIS link
3 0.97955552694284460582421883726349182644553675249552... Template:OEIS link
4 0.99204797452504026001343697762544335673690485127618... Template:OEIS link
5 1.00968038728586616112008919046263069260327634721152... Template:OEIS link
6 1.00591719699867346844401398355425565639061565500693... Template:OEIS link
7 0.98997565333341709417539648305886920020824715143074... Template:OEIS link
8 0.99171832163282219699954748276579333986785976057305... Template:OEIS link
9 1.01846992992099291217065904937667217230861019056407... Template:OEIS link
10 1.01911023332938385372216470498629751351348137284099... Template:OEIS link

See also

References