List of mathematical series: Difference between revisions

From testwiki
Jump to navigation Jump to search
imported>Citation bot
Added publisher. | Use this bot. Report bugs. | Suggested by Abductive | Category:Mathematical series | #UCB_Category 54/84
 
(No difference)

Latest revision as of 23:00, 11 July 2024

Template:Short description Template:See also

This list of mathematical series contains formulae for finite and infinite sums. It can be used in conjunction with other tools for evaluating sums.

Sums of powers

See Faulhaber's formula.

  • k=0mkn1=Bn(m+1)Bnn

The first few values are:

  • k=1mk=m(m+1)2
  • k=1mk2=m(m+1)(2m+1)6=m33+m22+m6
  • k=1mk3=[m(m+1)2]2=m44+m32+m24

See zeta constants.

  • ζ(2n)=k=11k2n=(1)n+1B2n(2π)2n2(2n)!

The first few values are:

  • ζ(2)=k=11k2=π26 (the Basel problem)
  • ζ(4)=k=11k4=π490
  • ζ(6)=k=11k6=π6945

Power series

Low-order polylogarithms

Finite sums:

  • k=mnzk=zmzn+11z, (geometric series)
  • k=0nzk=1zn+11z
  • k=1nzk=1zn+11z1=zzn+11z
  • k=1nkzk=z1(n+1)zn+nzn+1(1z)2
  • k=1nk2zk=z1+z(n+1)2zn+(2n2+2n1)zn+1n2zn+2(1z)3
  • k=1nkmzk=(zddz)m1zn+11z

Infinite sums, valid for |z|<1 (see polylogarithm):

  • Lin(z)=k=1zkkn

The following is a useful property to calculate low-integer-order polylogarithms recursively in closed form:

  • ddzLin(z)=Lin1(z)z
  • Li1(z)=k=1zkk=ln(1z)
  • Li0(z)=k=1zk=z1z
  • Li1(z)=k=1kzk=z(1z)2
  • Li2(z)=k=1k2zk=z(1+z)(1z)3
  • Li3(z)=k=1k3zk=z(1+4z+z2)(1z)4
  • Li4(z)=k=1k4zk=z(1+z)(1+10z+z2)(1z)5

Exponential function

  • k=0zkk!=ez
  • k=0kzkk!=zez (cf. mean of Poisson distribution)
  • k=0k2zkk!=(z+z2)ez (cf. second moment of Poisson distribution)
  • k=0k3zkk!=(z+3z2+z3)ez
  • k=0k4zkk!=(z+7z2+6z3+z4)ez
  • k=0knzkk!=zddzk=0kn1zkk!=ezTn(z)

where Tn(z) is the Touchard polynomials.

Trigonometric, inverse trigonometric, hyperbolic, and inverse hyperbolic functions relationship

  • k=0(1)kz2k+1(2k+1)!=sinz
  • k=0z2k+1(2k+1)!=sinhz
  • k=0(1)kz2k(2k)!=cosz
  • k=0z2k(2k)!=coshz
  • k=1(1)k1(22k1)22kB2kz2k1(2k)!=tanz,|z|<π2
  • k=1(22k1)22kB2kz2k1(2k)!=tanhz,|z|<π2
  • k=0(1)k22kB2kz2k1(2k)!=cotz,|z|<π
  • k=022kB2kz2k1(2k)!=cothz,|z|<π
  • k=0(1)k1(22k2)B2kz2k1(2k)!=cscz,|z|<π
  • k=0(22k2)B2kz2k1(2k)!=cschz,|z|<π
  • k=0(1)kE2kz2k(2k)!=sechz,|z|<π2
  • k=0E2kz2k(2k)!=secz,|z|<π2
  • k=1(1)k1z2k(2k)!=verz (versine)
  • k=1(1)k1z2k2(2k)!=havz[1] (haversine)
  • k=0(2k)!z2k+122k(k!)2(2k+1)=arcsinz,|z|1
  • k=0(1)k(2k)!z2k+122k(k!)2(2k+1)=arcsinhz,|z|1
  • k=0(1)kz2k+12k+1=arctanz,|z|<1
  • k=0z2k+12k+1=arctanhz,|z|<1
  • ln2+k=1(1)k1(2k)!z2k22k+1k(k!)2=ln(1+1+z2),|z|1
  • k=2(karctanh(1k)1)=3ln(4π)2

Modified-factorial denominators

  • k=0(4k)!24k2(2k)!(2k+1)!zk=11zz,|z|<1[2]
  • k=022k(k!)2(k+1)(2k+1)!z2k+2=(arcsinz)2,|z|1[2]
  • n=0k=0n1(4k2+α2)(2n)!z2n+n=0αk=0n1[(2k+1)2+α2](2n+1)!z2n+1=eαarcsinz,|z|1

Binomial coefficients

Harmonic numbers

(See harmonic numbers, themselves defined Hn=j=1n1j, and H(x) generalized to the real numbers)

  • k=1Hkzk=ln(1z)1z,|z|<1
  • k=1Hkk+1zk+1=12[ln(1z)]2,|z|<1
  • k=1(1)k1H2k2k+1z2k+1=12arctanzlog(1+z2),|z|<1[2]
  • n=0k=02n(1)k2k+1z4n+24n+2=14arctanzlog1+z1z,|z|<1[2]
  • n=0x2n2(n+x)=xπ26H(x)

Binomial coefficients

Template:Main

  • k=0n(nk)=2n
  • k=0n(nk)2=(2nn)
  • k=0n(1)k(nk)=0, where n1
  • k=0n(km)=(n+1m+1)
  • k=0n(m+k1k)=(n+mn) (see Multiset)
  • k=0n(αk)(βnk)=(α+βn),where α+βn (see Vandermonde identity)
  • A  𝒫(E)1=2n, where E is a finite set, and card(E) = n
  • {(A, B)  (𝒫(E))2A  B1=3n, where E is a finite set, and card(E) = n
  • A  𝒫(E)card(A)=n2n1, where E is a finite set, and card(E) = n

Trigonometric functions

Sums of sines and cosines arise in Fourier series.

  • k=1cos(kθ)k=12ln(22cosθ)=ln(2sinθ2),0<θ<2π
  • k=1sin(kθ)k=πθ2,0<θ<2π
  • k=1(1)k1kcos(kθ)=12ln(2+2cosθ)=ln(2cosθ2),0θ<π
  • k=1(1)k1ksin(kθ)=θ2,π2θπ2
  • k=1cos(2kθ)2k=12ln(2sinθ),0<θ<π
  • k=1sin(2kθ)2k=π2θ4,0<θ<π
  • k=0cos[(2k+1)θ]2k+1=12ln(cotθ2),0<θ<π
  • k=0sin[(2k+1)θ]2k+1=π4,0<θ<π,[4]
  • k=1sin(2πkx)k=π(12{x}), x
  • k=1sin(2πkx)k2n1=(1)n(2π)2n12(2n1)!B2n1({x}), x, n
  • k=1cos(2πkx)k2n=(1)n1(2π)2n2(2n)!B2n({x}), x, n
  • Bn(x)=n!2n1πnk=11kncos(2πkxπn2),0<x<1[5]
  • k=0nsin(θ+kα)=sin(n+1)α2sin(θ+nα2)sinα2
  • k=0ncos(θ+kα)=sin(n+1)α2cos(θ+nα2)sinα2
  • k=1n1sinπkn=cotπ2n
  • k=1n1sin2πkn=0
  • k=0n1csc2(θ+πkn)=n2csc2(nθ)[6]
  • k=1n1csc2πkn=n213
  • k=1n1csc4πkn=n4+10n21145

Rational functions

  • n=a+1an2a2=12H2a[7]
  • n=01n2+a2=1+aπcoth(aπ)2a2
  • n=0(1)nn2+a2=1+aπcsch(aπ)2a2
  • n=0(2n+1)(1)n(2n+1)2+a2=π4sech(aπ2)
  • n=01n4+4a4=18a4+π(sinh(2πa)+sin(2πa))8a3(cosh(2πa)cos(2πa))
  • An infinite series of any rational function of n can be reduced to a finite series of polygamma functions, by use of partial fraction decomposition,[8] as explained here. This fact can also be applied to finite series of rational functions, allowing the result to be computed in constant time even when the series contains a large number of terms.

Exponential function

  • 1pn=0p1exp(2πin2qp)=eπi/42qn=02q1exp(πin2p2q)(see the Landsberg–Schaar relation)
  • n=eπn2=π4Γ(34)

Numeric series

These numeric series can be found by plugging in numbers from the series listed above.

Alternating harmonic series

  • k=1(1)k+1k=1112+1314+=ln2
  • k=1(1)k+12k1=1113+1517+19=π4

Sum of reciprocal of factorials

  • k=01k!=10!+11!+12!+13!+14!+=e
  • k=01(2k)!=10!+12!+14!+16!+18!+=12(e+1e)=cosh1
  • k=01(3k)!=10!+13!+16!+19!+112!+=13(e+2ecos32)
  • k=01(4k)!=10!+14!+18!+112!+116!+=12(cos1+cosh1)

Trigonometry and π

  • k=0(1)k(2k+1)!=11!13!+15!17!+19!+=sin1
  • k=0(1)k(2k)!=10!12!+14!16!+18!+=cos1
  • k=11k2+1=12+15+110+117+=12(πcothπ1)
  • k=1(1)kk2+1=12+15110+117+=12(πcschπ1)
  • 3+42×3×444×5×6+46×7×848×9×10+=π

Reciprocal of tetrahedral numbers

  • k=11Tek=11+14+110+120+135+=32

Where Ten=k=1nTk

Exponential and logarithms

  • k=01(2k+1)(2k+2)=11×2+13×4+15×6+17×8+19×10+=ln2
  • k=112kk=12+18+124+164+1160+=ln2
  • k=1(1)k+12kk+k=1(1)k+13kk=(12+13)(18+118)+(124+181)(164+1324)+=ln2
  • k=113kk+k=114kk=(13+14)+(118+132)+(181+1192)+(1324+11024)+=ln2
  • k=11nkk=ln(nn1), that is n>1

See also

Template:Div col

Template:Div col end

Notes

Template:Reflist

References

  1. Template:Cite web
  2. 2.0 2.1 2.2 2.3 Template:Cite book
  3. 3.0 3.1 3.2 3.3 Template:Cite web
  4. Calculate the Fourier expansion of the function f(x)=π4 on the interval 0<x<π:
    • π4=n=0cnsin[nx]+dncos[nx]
    {cn={1n(n odd)0(n even)dn=0(n)
  5. Template:Cite web
  6. Template:Cite web
  7. Template:Cite web
  8. Template:Cite book