Landsberg–Schaar relation
Template:Short description Template:Use American English In number theory and harmonic analysis, the Landsberg–Schaar relation (or identity) is the following equation, which is valid for arbitrary positive integers p and q:
The standard way to prove it[1] is to put Template:Mvar = Template:Sfrac + ε, where ε > 0 in this identity due to Jacobi (which is essentially just a special case of the Poisson summation formula in classical harmonic analysis):
and then let ε → 0.
A proof using only finite methods was discovered in 2018 by Ben Moore.[2][3]
If we let q = 1, the identity reduces to a formula for the quadratic Gauss sum modulo p.
The Landsberg–Schaar identity can be rephrased more symmetrically as
provided that we add the hypothesis that pq is an even number.