Catenary: Difference between revisions
(No difference)
|
Latest revision as of 15:23, 24 January 2025
Template:About Template:Redirect Template:Short description

In physics and geometry, a catenary (Template:IPAc-en Template:Respell, Template:IPAc-en Template:Respell) is the curve that an idealized hanging chain or cable assumes under its own weight when supported only at its ends in a uniform gravitational field.
The catenary curve has a U-like shape, superficially similar in appearance to a parabola, which it is not.
The curve appears in the design of certain types of arches and as a cross section of the catenoid—the shape assumed by a soap film bounded by two parallel circular rings.
The catenary is also called the alysoid, chainette,[1] or, particularly in the materials sciences, an example of a funicular.[2] Rope statics describes catenaries in a classic statics problem involving a hanging rope.[3]
Mathematically, the catenary curve is the graph of the hyperbolic cosine function. The surface of revolution of the catenary curve, the catenoid, is a minimal surface, specifically a minimal surface of revolution. A hanging chain will assume a shape of least potential energy which is a catenary.[4] Galileo Galilei in 1638 discussed the catenary in the book Two New Sciences recognizing that it was different from a parabola. The mathematical properties of the catenary curve were studied by Robert Hooke in the 1670s, and its equation was derived by Leibniz, Huygens and Johann Bernoulli in 1691.
Catenaries and related curves are used in architecture and engineering (e.g., in the design of bridges and arches so that forces do not result in bending moments). In the offshore oil and gas industry, "catenary" refers to a steel catenary riser, a pipeline suspended between a production platform and the seabed that adopts an approximate catenary shape. In the rail industry it refers to the overhead wiring that transfers power to trains. (This often supports a contact wire, in which case it does not follow a true catenary curve.)
In optics and electromagnetics, the hyperbolic cosine and sine functions are basic solutions to Maxwell's equations.[5] The symmetric modes consisting of two evanescent waves would form a catenary shape.[6][7][8]
History

The word "catenary" is derived from the Latin word catēna, which means "chain". The English word "catenary" is usually attributed to Thomas Jefferson,[9][10] who wrote in a letter to Thomas Paine on the construction of an arch for a bridge:
It is often said[11] that Galileo thought the curve of a hanging chain was parabolic. However, in his Two New Sciences (1638), Galileo wrote that a hanging cord is only an approximate parabola, correctly observing that this approximation improves in accuracy as the curvature gets smaller and is almost exact when the elevation is less than 45°.[12] The fact that the curve followed by a chain is not a parabola was proven by Joachim Jungius (1587–1657); this result was published posthumously in 1669.[11]
The application of the catenary to the construction of arches is attributed to Robert Hooke, whose "true mathematical and mechanical form" in the context of the rebuilding of St Paul's Cathedral alluded to a catenary.[13] Some much older arches approximate catenaries, an example of which is the Arch of Taq-i Kisra in Ctesiphon.[14]

In 1671, Hooke announced to the Royal Society that he had solved the problem of the optimal shape of an arch, and in 1675 published an encrypted solution as a Latin anagram[15] in an appendix to his Description of Helioscopes,[16] where he wrote that he had found "a true mathematical and mechanical form of all manner of Arches for Building." He did not publish the solution to this anagram[17] in his lifetime, but in 1705 his executor provided it as ut pendet continuum flexile, sic stabit contiguum rigidum inversum, meaning "As hangs a flexible cable so, inverted, stand the touching pieces of an arch."
In 1691, Gottfried Leibniz, Christiaan Huygens, and Johann Bernoulli derived the equation in response to a challenge by Jakob Bernoulli;[11] their solutions were published in the Acta Eruditorum for June 1691.[18][19] David Gregory wrote a treatise on the catenary in 1697[11][20] in which he provided an incorrect derivation of the correct differential equation.[19]
Leonhard Euler proved in 1744 that the catenary is the curve which, when rotated about the Template:Mvar-axis, gives the surface of minimum surface area (the catenoid) for the given bounding circles.[1] Nicolas Fuss gave equations describing the equilibrium of a chain under any force in 1796.[21]
Inverted catenary arch
Catenary arches are often used in the construction of kilns. To create the desired curve, the shape of a hanging chain of the desired dimensions is transferred to a form which is then used as a guide for the placement of bricks or other building material.[22][23]
The Gateway Arch in St. Louis, Missouri, United States is sometimes said to be an (inverted) catenary, but this is incorrect.[24] It is close to a more general curve called a flattened catenary, with equation Template:Math, which is a catenary if Template:Math. While a catenary is the ideal shape for a freestanding arch of constant thickness, the Gateway Arch is narrower near the top. According to the U.S. National Historic Landmark nomination for the arch, it is a "weighted catenary" instead. Its shape corresponds to the shape that a weighted chain, having lighter links in the middle, would form.[25][26]
-
The Gateway Arch (St. Louis, Missouri) is a flattened catenary.
-
Catenary arch kiln under construction over temporary form
Catenary bridges


In free-hanging chains, the force exerted is uniform with respect to length of the chain, and so the chain follows the catenary curve.[29] The same is true of a simple suspension bridge or "catenary bridge," where the roadway follows the cable.[30][31]
A stressed ribbon bridge is a more sophisticated structure with the same catenary shape.[32][33]
However, in a suspension bridge with a suspended roadway, the chains or cables support the weight of the bridge, and so do not hang freely. In most cases the roadway is flat, so when the weight of the cable is negligible compared with the weight being supported, the force exerted is uniform with respect to horizontal distance, and the result is a parabola, as discussed below (although the term "catenary" is often still used, in an informal sense). If the cable is heavy then the resulting curve is between a catenary and a parabola.[34][35]

Anchoring of marine objects
The catenary produced by gravity provides an advantage to heavy anchor rodes. An anchor rode (or anchor line) usually consists of chain or cable or both. Anchor rodes are used by ships, oil rigs, docks, floating wind turbines, and other marine equipment which must be anchored to the seabed.
When the rope is slack, the catenary curve presents a lower angle of pull on the anchor or mooring device than would be the case if it were nearly straight. This enhances the performance of the anchor and raises the level of force it will resist before dragging. To maintain the catenary shape in the presence of wind, a heavy chain is needed, so that only larger ships in deeper water can rely on this effect. Smaller boats also rely on catenary to maintain maximum holding power.[36]
Cable ferries and chain boats present a special case of marine vehicles moving although moored by the two catenaries each of one or more cables (wire ropes or chains) passing through the vehicle and moved along by motorized sheaves. The catenaries can be evaluated graphically.[37]
Mathematical description
Equation

The equation of a catenary in Cartesian coordinates has the form[34]
where Template:Math is the hyperbolic cosine function, and where Template:Mvar is the distance of the lowest point above the x axis.[38] All catenary curves are similar to each other, since changing the parameter Template:Mvar is equivalent to a uniform scaling of the curve.
The Whewell equation for the catenary is[34] where is the tangential angle and Template:Mvar the arc length.
Differentiating gives and eliminating gives the Cesàro equation[39] where is the curvature.
The radius of curvature is then which is the length of the normal between the curve and the Template:Mvar-axis.[40]
Relation to other curves
When a parabola is rolled along a straight line, the roulette curve traced by its focus is a catenary.[41] The envelope of the directrix of the parabola is also a catenary.[42] The involute from the vertex, that is the roulette traced by a point starting at the vertex when a line is rolled on a catenary, is the tractrix.[41]
Another roulette, formed by rolling a line on a catenary, is another line. This implies that square wheels can roll perfectly smoothly on a road made of a series of bumps in the shape of an inverted catenary curve. The wheels can be any regular polygon except a triangle, but the catenary must have parameters corresponding to the shape and dimensions of the wheels.[43]
Geometrical properties
Over any horizontal interval, the ratio of the area under the catenary to its length equals Template:Mvar, independent of the interval selected. The catenary is the only plane curve other than a horizontal line with this property. Also, the geometric centroid of the area under a stretch of catenary is the midpoint of the perpendicular segment connecting the centroid of the curve itself and the Template:Mvar-axis.[44]
Science
A moving charge in a uniform electric field travels along a catenary (which tends to a parabola if the charge velocity is much less than the speed of light Template:Mvar).[45]
The surface of revolution with fixed radii at either end that has minimum surface area is a catenary
revolved about the Template:Mvar-axis.[41]
Analysis
Model of chains and arches
In the mathematical model the chain (or cord, cable, rope, string, etc.) is idealized by assuming that it is so thin that it can be regarded as a curve and that it is so flexible any force of tension exerted by the chain is parallel to the chain.[46] The analysis of the curve for an optimal arch is similar except that the forces of tension become forces of compression and everything is inverted.[47] An underlying principle is that the chain may be considered a rigid body once it has attained equilibrium.[48] Equations which define the shape of the curve and the tension of the chain at each point may be derived by a careful inspection of the various forces acting on a segment using the fact that these forces must be in balance if the chain is in static equilibrium.
Let the path followed by the chain be given parametrically by Template:Math where Template:Mvar represents arc length and Template:Math is the position vector. This is the natural parameterization and has the property that
where Template:Math is a unit tangent vector.

A differential equation for the curve may be derived as follows.[49] Let Template:Math be the lowest point on the chain, called the vertex of the catenary.[50] The slope Template:Math of the curve is zero at Template:Math since it is a minimum point. Assume Template:Math is to the right of Template:Math since the other case is implied by symmetry. The forces acting on the section of the chain from Template:Math to Template:Math are the tension of the chain at Template:Math, the tension of the chain at Template:Math, and the weight of the chain. The tension at Template:Math is tangent to the curve at Template:Math and is therefore horizontal without any vertical component and it pulls the section to the left so it may be written Template:Math where Template:Math is the magnitude of the force. The tension at Template:Math is parallel to the curve at Template:Math and pulls the section to the right. The tension at Template:Math can be split into two components so it may be written Template:Math, where Template:Mvar is the magnitude of the force and Template:Mvar is the angle between the curve at Template:Math and the Template:Mvar-axis (see tangential angle). Finally, the weight of the chain is represented by Template:Math where Template:Mvar is the weight per unit length and Template:Mvar is the length of the segment of chain between Template:Math and Template:Math.
The chain is in equilibrium so the sum of three forces is Template:Math, therefore
and
and dividing these gives
It is convenient to write
which is the length of chain whose weight is equal in magnitude to the tension at Template:Math.[51] Then
is an equation defining the curve.
The horizontal component of the tension, Template:Math is constant and the vertical component of the tension, Template:Math is proportional to the length of chain between Template:Math and the vertex.[52]
Derivation of equations for the curve
The differential equation , given above, can be solved to produce equations for the curve. [53] We will solve the equation using the boundary condition that the vertex is positioned at and .
First, invoke the formula for arc length to get then separate variables to obtain
A reasonably straightforward approach to integrate this is to use hyperbolic substitution, which gives (where is a constant of integration), and hence
But , so which integrates as (with being the constant of integration satisfying the boundary condition).
Since the primary interest here is simply the shape of the curve, the placement of the coordinate axes are arbitrary; so make the convenient choice of to simplify the result to
For completeness, the relation can be derived by solving each of the and relations for , giving: so which can be rewritten as
Alternative derivation
The differential equation can be solved using a different approach.[54] From
it follows that
and
Integrating gives,
and
As before, the Template:Mvar and Template:Mvar-axes can be shifted so Template:Mvar and Template:Mvar can be taken to be 0. Then
and taking the reciprocal of both sides
Adding and subtracting the last two equations then gives the solution and
Determining parameters

In general the parameter Template:Mvar is the position of the axis. The equation can be determined in this case as follows:[55]
Relabel if necessary so that Template:Math is to the left of Template:Math and let Template:Mvar be the horizontal and Template:Mvar be the vertical distance from Template:Math to Template:Math. Translate the axes so that the vertex of the catenary lies on the Template:Mvar-axis and its height Template:Mvar is adjusted so the catenary satisfies the standard equation of the curve
and let the coordinates of Template:Math and Template:Math be Template:Math and Template:Math respectively. The curve passes through these points, so the difference of height is
and the length of the curve from Template:Math to Template:Math is
When Template:Math is expanded using these expressions the result is
so
This is a transcendental equation in Template:Mvar and must be solved numerically. Since is strictly monotonic on ,[56] there is at most one solution with Template:Math and so there is at most one position of equilibrium.
However, if both ends of the curve (Template:Math and Template:Math) are at the same level (Template:Math), it can be shown that[57] where L is the total length of the curve between Template:Math and Template:Math and Template:Mvar is the sag (vertical distance between Template:Math, Template:Math and the vertex of the curve).
It can also be shown that and where H is the horizontal distance between Template:Math and Template:Math which are located at the same level (Template:Math).
The horizontal traction force at Template:Math and Template:Math is Template:Math, where Template:Mvar is the weight per unit length of the chain or cable.
Tension relations
There is a simple relationship between the tension in the cable at a point and its Template:Mvar- and/or Template:Mvar- coordinate. Begin by combining the squares of the vector components of the tension: which (recalling that ) can be rewritten as But, as shown above, (assuming that ), so we get the simple relations[58]
Variational formulation
Consider a chain of length suspended from two points of equal height and at distance . The curve has to minimize its potential energy (where Template:Mvar is the weight per unit length) and is subject to the constraint
The modified Lagrangian is therefore where is the Lagrange multiplier to be determined. As the independent variable does not appear in the Lagrangian, we can use the Beltrami identity where is an integration constant, in order to obtain a first integral
This is an ordinary first order differential equation that can be solved by the method of separation of variables. Its solution is the usual hyperbolic cosine where the parameters are obtained from the constraints.
Generalizations with vertical force
Nonuniform chains
If the density of the chain is variable then the analysis above can be adapted to produce equations for the curve given the density, or given the curve to find the density.[59]
Let Template:Mvar denote the weight per unit length of the chain, then the weight of the chain has magnitude
where the limits of integration are Template:Math and Template:Math. Balancing forces as in the uniform chain produces
and and therefore
Differentiation then gives
In terms of Template:Mvar and the radius of curvature Template:Mvar this becomes
Suspension bridge curve

A similar analysis can be done to find the curve followed by the cable supporting a suspension bridge with a horizontal roadway.[60] If the weight of the roadway per unit length is Template:Mvar and the weight of the cable and the wire supporting the bridge is negligible in comparison, then the weight on the cable (see the figure in Catenary#Model of chains and arches) from Template:Math to Template:Math is Template:Mvar where Template:Mvar is the horizontal distance between Template:Math and Template:Math. Proceeding as before gives the differential equation
This is solved by simple integration to get
and so the cable follows a parabola. If the weight of the cable and supporting wires is not negligible then the analysis is more complex.[61]
Catenary of equal strength
In a catenary of equal strength, the cable is strengthened according to the magnitude of the tension at each point, so its resistance to breaking is constant along its length. Assuming that the strength of the cable is proportional to its density per unit length, the weight, Template:Mvar, per unit length of the chain can be written Template:Mvar, where Template:Mvar is constant, and the analysis for nonuniform chains can be applied.[62]
In this case the equations for tension are
Combining gives
and by differentiation
where Template:Mvar is the radius of curvature.
The solution to this is
In this case, the curve has vertical asymptotes and this limits the span to Template:Math. Other relations are
The curve was studied 1826 by Davies Gilbert and, apparently independently, by Gaspard-Gustave Coriolis in 1836.
Recently, it was shown that this type of catenary could act as a building block of electromagnetic metasurface and was known as "catenary of equal phase gradient".[63]
Elastic catenary
In an elastic catenary, the chain is replaced by a spring which can stretch in response to tension. The spring is assumed to stretch in accordance with Hooke's Law. Specifically, if Template:Math is the natural length of a section of spring, then the length of the spring with tension Template:Mvar applied has length
where Template:Mvar is a constant equal to Template:Mvar, where Template:Mvar is the stiffness of the spring.[64] In the catenary the value of Template:Mvar is variable, but ratio remains valid at a local level, so[65] The curve followed by an elastic spring can now be derived following a similar method as for the inelastic spring.[66]
The equations for tension of the spring are
and
from which
where Template:Mvar is the natural length of the segment from Template:Math to Template:Math and Template:Math is the weight per unit length of the spring with no tension. Write so
Then from which
Integrating gives the parametric equations
Again, the Template:Mvar and Template:Mvar-axes can be shifted so Template:Mvar and Template:Mvar can be taken to be 0. So
are parametric equations for the curve. At the rigid limit where Template:Mvar is large, the shape of the curve reduces to that of a non-elastic chain.
Other generalizations
Chain under a general force
With no assumptions being made regarding the force Template:Math acting on the chain, the following analysis can be made.[67]
First, let Template:Math be the force of tension as a function of Template:Mvar. The chain is flexible so it can only exert a force parallel to itself. Since tension is defined as the force that the chain exerts on itself, Template:Math must be parallel to the chain. In other words,
where Template:Mvar is the magnitude of Template:Math and Template:Math is the unit tangent vector.
Second, let Template:Math be the external force per unit length acting on a small segment of a chain as a function of Template:Mvar. The forces acting on the segment of the chain between Template:Mvar and Template:Math are the force of tension Template:Math at one end of the segment, the nearly opposite force Template:Math at the other end, and the external force acting on the segment which is approximately Template:Math. These forces must balance so
Divide by Template:Math and take the limit as Template:Math to obtain
These equations can be used as the starting point in the analysis of a flexible chain acting under any external force. In the case of the standard catenary, Template:Math where the chain has weight Template:Mvar per unit length.
See also
- Catenary arch
- Chain fountain or self-siphoning beads
- Funicular curve
- Overhead catenary – power lines suspended over rail or tram vehicles
- Roulette (curve) – an elliptic/hyperbolic catenary
- Troposkein – the shape of a spun rope
- Weighted catenary
Notes
Bibliography
- Template:AnchorTemplate:Cite book
- Template:Cite book
- Template:AnchorTemplate:Cite book
- Template:AnchorTemplate:Cite book
- Template:Cite book
- Template:Cite book
- Template:AnchorTemplate:Cite book
- Template:AnchorTemplate:Mathworld
Further reading
External links
Template:Commons category Template:Wikiquote Template:Wikisource1911Enc
- Template:MacTutor
- Template:PlanetMath
- Catenary curve calculator
- Catenary at The Geometry Center
- "Catenary" at Visual Dictionary of Special Plane Curves
- The Catenary - Chains, Arches, and Soap Films.
- Cable Sag Error Calculator – Calculates the deviation from a straight line of a catenary curve and provides derivation of the calculator and references.
- Dynamic as well as static cetenary curve equations derived – The equations governing the shape (static case) as well as dynamics (dynamic case) of a centenary is derived. Solution to the equations discussed.
- The straight line, the catenary, the brachistochrone, the circle, and Fermat Unified approach to some geodesics.
- Ira Freeman "A General Form of the Suspension Bridge Catenary" Bulletin of the AMS
- ↑ 1.0 1.1 MathWorld
- ↑ e.g.: Template:Cite book
- ↑ Template:Cite web
- ↑ Template:Cite web
- ↑ Template:Cite book
- ↑ Template:Cite journal
- ↑ Template:Cite journal
- ↑ Template:Cite journal
- ↑ Template:Cite web
- ↑ Template:Cite book
- ↑ 11.0 11.1 11.2 11.3 Lockwood p. 124
- ↑ Template:Cite book
- ↑ Template:Cite journal
- ↑ Template:Cite book
- ↑ cf. the anagram for Hooke's law, which appeared in the next paragraph.
- ↑ Template:Cite web
- ↑ The original anagram was abcccddeeeeefggiiiiiiiillmmmmnnnnnooprrsssttttttuuuuuuuux: the letters of the Latin phrase, alphabetized.
- ↑ Template:Citation
- ↑ 19.0 19.1 Template:Citation
- ↑ Template:Citation
- ↑ Routh Art. 455, footnote
- ↑ Template:Cite book
- ↑ Template:Cite book
- ↑ Template:Citation
- ↑ Template:Cite journal
- ↑ Template:Citation and Template:NHLS url Template:Small
- ↑ Template:Cite book
- ↑ Template:Cite book
- ↑ Template:Cite book
- ↑ Template:Cite book
- ↑ Template:Cite book
- ↑ Template:Cite book
- ↑ Template:Cite journal
- ↑ 34.0 34.1 34.2 Lockwood p. 122
- ↑ Template:Cite web
- ↑ Template:Cite web
- ↑ Template:Cite web
- ↑ Template:Cite web
- ↑ MathWorld, eq. 7
- ↑ Routh Art. 444
- ↑ 41.0 41.1 41.2 Template:Cite book
- ↑ Yates p. 80
- ↑ Template:Cite journal
- ↑ Template:Cite journal
- ↑ Template:Cite book
- ↑ Routh Art. 442, p. 316
- ↑ Template:Cite book
- ↑ Whewell p. 65
- ↑ Following Routh Art. 443 p. 316
- ↑ Routh Art. 443 p. 317
- ↑ Whewell p. 67
- ↑ Routh Art 443, p. 318
- ↑ A minor variation of the derivation presented here can be found on page 107 of Maurer. A different (though ultimately mathematically equivalent) derivation, which does not make use of hyperbolic function notation, can be found in Routh (Article 443, starting in particular at page 317).
- ↑ Following Lamb p. 342
- ↑ Following Todhunter Art. 186
- ↑ See Routh art. 447
- ↑ Archived at GhostarchiveTemplate:Cbignore and the Wayback MachineTemplate:Cbignore: Template:Cite webTemplate:Cbignore
- ↑ Routh Art 443, p. 318
- ↑ Following Routh Art. 450
- ↑ Following Routh Art. 452
- ↑ Ira Freeman investigated the case where only the cable and roadway are significant, see the External links section. Routh gives the case where only the supporting wires have significant weight as an exercise.
- ↑ Following Routh Art. 453
- ↑ Template:Cite journal
- ↑ Routh Art. 489
- ↑ Routh Art. 494
- ↑ Following Routh Art. 500
- ↑ Follows Routh Art. 455