Whewell equation

From testwiki
Jump to navigation Jump to search

Template:Short description

Important quantities in the Whewell equation

The Whewell equation of a plane curve is an equation that relates the tangential angle (Template:Mvar) with arc length (Template:Mvar), where the tangential angle is the angle between the tangent to the curve at some point and the Template:Mvar-axis, and the arc length is the distance along the curve from a fixed point. These quantities do not depend on the coordinate system used except for the choice of the direction of the Template:Mvar-axis, so this is an intrinsic equation of the curve, or, less precisely, the intrinsic equation. If one curve is obtained from another curve by translation then their Whewell equations will be the same.

When the relation is a function, so that tangential angle is given as a function of arc length, certain properties become easy to manipulate. In particular, the derivative of the tangential angle with respect to arc length is equal to the curvature. Thus, taking the derivative of the Whewell equation yields a Cesàro equation for the same curve.

The concept is named after William Whewell, who introduced it in 1849, in a paper in the Cambridge Philosophical Transactions. In his conception, the angle used is the deviation from the direction of the curve at some fixed starting point, and this convention is sometimes used by other authors as well. This is equivalent to the definition given here by the addition of a constant to the angle or by rotating the curve.

Properties

If a point r=(x,y) on the curve is given parametrically in terms of the arc length, sr, then the tangential angle Template:Mvar is determined by

drds=(dxdsdyds)=(cosφsinφ)since|drds|=1,

which implies dydx=tanφ.

Parametric equations for the curve can be obtained by integrating: x=cosφds,y=sinφds.

Since the curvature is defined by κ=dφds,

the Cesàro equation is easily obtained by differentiating the Whewell equation.

Examples

Curve Equation
Line φ=c
Circle s=aφ
Logarithmic Spiral s=aeφtanαsinα
Catenary s=atanφ
Tautochrone s=asinφ

References

  • Whewell, W. Of the Intrinsic Equation of a Curve, and its Application. Cambridge Philosophical Transactions, Vol. VIII, pp. 659-671, 1849. Google Books
  • Todhunter, Isaac. William Whewell, D.D., An Account of His Writings, with Selections from His Literary and Scientific Correspondence. Vol. I. Macmillan and Co., 1876, London. Section 56: p. 317.
  • Template:Cite book
  • Yates, R. C.: A Handbook on Curves and Their Properties, J. W. Edwards (1952), "Intrinsic Equations" p124-5