Young subgroup

From testwiki
Jump to navigation Jump to search

In mathematics, the Young subgroups of the symmetric group Sn are special subgroups that arise in combinatorics and representation theory. When Sn is viewed as the group of permutations of the set {1,2,,n}, and if λ=(λ1,,λ) is an integer partition of n, then the Young subgroup Sλ indexed by λ is defined by Sλ=S{1,2,,λ1}×S{λ1+1,λ1+2,,λ1+λ2}××S{nλ+1,nλ+2,,n}, where S{a,b,} denotes the set of permutations of {a,b,} and × denotes the direct product of groups. Abstractly, Sλ is isomorphic to the product Sλ1×Sλ2××Sλ. Young subgroups are named for Alfred Young.[1]

When Sn is viewed as a reflection group, its Young subgroups are precisely its parabolic subgroups. They may equivalently be defined as the subgroups generated by a subset of the adjacent transpositions (1 2),(2 3),,(n1 n).[2]

In some cases, the name Young subgroup is used more generally for the product SB1××SB, where {B1,,B} is any set partition of {1,,n} (that is, a collection of disjoint, nonempty subsets whose union is {1,,n}).[3] This more general family of subgroups consists of all the conjugates of those under the previous definition.[4] These subgroups may also be characterized as the subgroups of Sn that are generated by a set of transpositions.[5]

References

Template:Reflist

Further reading