X-ray transform

From testwiki
Jump to navigation Jump to search

Template:Short description In mathematics, the X-ray transform (also called ray transform[1] or John transform) is an integral transform introduced by Fritz John in 1938[2] that is one of the cornerstones of modern integral geometry. It is very closely related to the Radon transform, and coincides with it in two dimensions. In higher dimensions, the X-ray transform of a function is defined by integrating over lines rather than over hyperplanes as in the Radon transform. The X-ray transform derives its name from X-ray tomography (used in CT scans) because the X-ray transform of a function ƒ represents the attenuation data of a tomographic scan through an inhomogeneous medium whose density is represented by the function ƒ. Inversion of the X-ray transform is therefore of practical importance because it allows one to reconstruct an unknown density ƒ from its known attenuation data.

In detail, if ƒ is a compactly supported continuous function on the Euclidean space Rn, then the X-ray transform of ƒ is the function defined on the set of all lines in Rn by

Xf(L)=Lf=𝐑f(x0+tθ)dt

where x0 is an initial point on the line and θ is a unit vector in Rn giving the direction of the line L. The latter integral is not regarded in the oriented sense: it is the integral with respect to the 1-dimensional Lebesgue measure on the Euclidean line L.

The X-ray transform satisfies an ultrahyperbolic wave equation called John's equation.

The Gaussian or ordinary hypergeometric function can be written as an X-ray transform.Template:Harv.

References

Template:Reflist