Whitney covering lemma

From testwiki
Jump to navigation Jump to search

Template:Orphan

In mathematical analysis, the Whitney covering lemma, or Whitney decomposition, asserts the existence of a certain type of partition of an open set in a Euclidean space. Originally it was employed in the proof of Hassler Whitney's extension theorem. The lemma was subsequently applied to prove generalizations of the Calderón–Zygmund decomposition.

Roughly speaking, the lemma states that it is possible to decompose an open set by cubes each of whose diameters is proportional, within certain bounds, to its distance from the boundary of the open set. More precisely:

Whitney Covering Lemma Template:Harv

Let Ω be an open non-empty proper subset of n. Then there exists a family of closed cubes {Qj}j such that

  • jQj=Ω and the Qj's have disjoint interiors.
  • n(Qj)dist(Qj,Ωc)4n(Qj).
  • If the boundaries of two cubes Qj and Qk touch then 14(Qj)(Qk)4.
  • For a given Qj there exist at most 12nQk's that touch it.

Where (Q) denotes the length of a cube Q.

References


Template:Mathanalysis-stub