Weakly holomorphic modular form

From testwiki
Jump to navigation Jump to search

Template:Short description Template:Distinguish In mathematics, a weakly holomorphic modular form is similar to a holomorphic modular form, except that it is allowed to have poles at cusps. Examples include modular functions and modular forms.

Definition

To simplify notation this section does the level 1 case; the extension to higher levels is straightforward.

A level 1 weakly holomorphic modular form is a function f on the upper half plane with the properties:

  • f transforms like a modular form: f((aτ+b)/(cτ+d))=(cτ+d)kf(τ) for some integer k called the weight, for any elements of SL2(Z).
  • As a function of q=eiτ, f is given by a Laurent series whose radius of convergence is 1 (so f is holomorphic on the upper half plane and meromorphic at the cusps).

Examples

The ring of level 1 modular forms is generated by the Eisenstein series E4 and E6 (which generate the ring of holomorphic modular forms) together with the inverse 1/Δ of the modular discriminant.

Any weakly holomorphic modular form of any level can be written as a quotient of two holomorphic modular forms. However, not every quotient of two holomorphic modular forms is a weakly holomorphic modular form, as it may have poles in the upper half plane.

References