Total angular momentum quantum number

From testwiki
Jump to navigation Jump to search

Template:Short description Template:Further Template:Use American EnglishIn quantum mechanics, the total angular momentum quantum number parametrises the total angular momentum of a given particle, by combining its orbital angular momentum and its intrinsic angular momentum (i.e., its spin).

If s is the particle's spin angular momentum and its orbital angular momentum vector, the total angular momentum j is 𝐣=𝐬+.

The associated quantum number is the main total angular momentum quantum number j. It can take the following range of values, jumping only in integer steps:[1] |s|j+s where is the azimuthal quantum number (parameterizing the orbital angular momentum) and s is the spin quantum number (parameterizing the spin).

The relation between the total angular momentum vector j and the total angular momentum quantum number j is given by the usual relation (see angular momentum quantum number) 𝐣=j(j+1)

The vector's z-projection is given by jz=mj where mj is the secondary total angular momentum quantum number, and the is the reduced Planck constant. It ranges from −j to +j in steps of one. This generates 2j + 1 different values of mj.

The total angular momentum corresponds to the Casimir invariant of the Lie algebra so(3) of the three-dimensional rotation group.

See also

References

Template:Reflist

Template:Electron configuration navbox


Template:Quantum-stub