Testwiki:Reference desk/Archives/Mathematics/2024 December 11
Template:Error:not substituted
|- ! colspan="3" align="center" | Mathematics desk |- ! width="20%" align="left" | < December 10 ! width="25%" align="center"|<< Nov | December | Jan >> ! width="20%" align="right" |Current desk > |}
| Welcome to the Wikipedia Mathematics Reference Desk Archives |
|---|
| The page you are currently viewing is a transcluded archive page. While you can leave answers for any questions shown below, please ask new questions on one of the current reference desk pages. |
December 11
Unique normal ultrafilter
So I'm supposed to know the answer to this, I suppose, but I don't seem to :-)
"Everyone knows" that, in , Gödel's constructible universe relative to an ultrafilter on some measurable cardinal , there is only a single normal ultrafilter, namely itself. See for example John R. Steel's monograph here, at Theorem 1.7.
So I guess that must mean that the product measure , meaning you fix some identification between and and then say a set has measure 1 if measure 1 many of its vertical sections have measure 1, must not be normal. (Unless it's somehow just equal to but I don't think it is.)
But is there some direct way to see that? Say, a continuous function with such that the set of fixed points of is not in the ultrafilter no singleton has a preimage under that's in the ultrafilter? I haven't been able to come up with it. --Trovatore (talk) 06:01, 11 December 2024 (UTC)