Testwiki:Reference desk/Archives/Mathematics/2017 June 19

From testwiki
Jump to navigation Jump to search

Template:Error:not substituted

{| width = "100%"

|- ! colspan="3" align="center" | Mathematics desk |- ! width="20%" align="left" | < June 18 ! width="25%" align="center"|<< May | June | Jul >> ! width="20%" align="right" |Current desk > |}

Welcome to the Wikipedia Mathematics Reference Desk Archives
The page you are currently viewing is a transcluded archive page. While you can leave answers for any questions shown below, please ask new questions on one of the current reference desk pages.


June 19

Solvability of the Rubik's cube group

I don't mean solvability of the puzzle, but rather, whether the group is a solvable group. To me, it seems like it is not solvable for similar reasons as the Galois groups involved in the Abel-Ruffini theorem. I've tried looking this up but couldn't find an answer.--Jasper Deng (talk) 05:45, 19 June 2017 (UTC)

All subgroups of a solvable group are solvable. But A8 (even permutatiions of corner pieces) and A12 (even permutations of edge pieces) are subgroups of the Rubik's Cube group, and A8 and A12 are not solvable (since they are simple and not Abelian). So we can conclude that the Rubik's Cube group is not solvable. Gandalf61 (talk) 09:17, 19 June 2017 (UTC)
Technically, the piece permutations form a homomorphic image of the Rubik group. But the homomorphism splits so there are isomorphic copies of these groups as subgroups. It should be mentioned that the Jordan–Hölder theorem comes into play here as well: the fact that if one non-solvable group appears as a quotient then there is no decomposition series with solvable factors. --RDBury (talk) 15:40, 20 June 2017 (UTC)