Testwiki:Reference desk/Archives/Mathematics/2015 March 24

From testwiki
Jump to navigation Jump to search

Template:Error:not substituted

{| width = "100%"

|- ! colspan="3" align="center" | Mathematics desk |- ! width="20%" align="left" | < March 23 ! width="25%" align="center"|<< Feb | March | Apr >> ! width="20%" align="right" |Current desk > |}

Welcome to the Wikipedia Mathematics Reference Desk Archives
The page you are currently viewing is a transcluded archive page. While you can leave answers for any questions shown below, please ask new questions on one of the current reference desk pages.


March 24

Pauli Matrices

Defining a vector σi for i=0,1,2,3 where σ0 is the 2×2 identity and the other elements are the pauli matrices. I believe there is a simple form for the rank-4 tensor given by Tijkl=12tr[σiσjσkσl] but I can't seem to find it. If anybody is able to point me in the right direction I would be quite grateful.

Since pinged, I could point out the first boxed eqn of Pauli matrices leads directly to, I think, Tijkl=δijδklδikδjl+δilδjk, which appears to have the right symmetries. Cuzkatzimhut (talk) 13:38, 24 March 2015 (UTC)
I think this would be correct if the indices only cycle over i=1,2,3, but the inclusion of the identity as σ0 makes things more complicated. — Preceding unsigned comment added by 128.40.61.82 (talk) 14:23, 24 March 2015 (UTC)
Apologies, yes, I took only indices 1,2,3. If 3 indices are 0, the expression vanishes. If two, say k,l, it is a delta of the other two. If one, l=0, it is i εijk. Cuzkatzimhut (talk) 15:13, 24 March 2015 (UTC)

In a related question if there is similarly a closed form for the orthogonal matrix Oij=12tr[σiAσjA1] in terms of operations in the 4-space involving the vector ai=12tr[σiA] where A is a general invertible complex 2×2 matrix it would be very useful to know.

Thank you. — Preceding unsigned comment added by 128.40.61.82 (talk) 11:42, 24 March 2015 (UTC)

Hmm. I don't know, but I might know the right person to ping. YohanN7 (talk) 12:33, 24 March 2015 (UTC)
So, utilizing the above, you should first take out the inert determinant of Template:Mvar killed by the inverse Template:Mvar in your expression, and supplant it with −|Template:Mvar| the length of your 3-vector a, and the determinant of your now normalized Template:Mvar, which is thus now reduced to the mere Pauli vector Template:Math. The inverse of Template:Mvar is just the similar Pauli vector with ai/a2 instead of ai, and using the above expression, Oij=(δij+2aiaj/a2) orthogonal, all right. Cuzkatzimhut (talk) 14:22, 24 March 2015 (UTC)
This I think is correct if we restrict only to the case that Template:Mvar is traceless.
Of course! take the trace out as an identity piece, if you like. Otherwise, you have to do the calculation with a Template:Math, invert it, etc... In "customary" applications, Template:Mvar is not arbitrary, but a unitary, rotation matrix, whose form is then substantially constrained. Cuzkatzimhut (talk) 15:09, 24 March 2015 (UTC)
I was looking at similarity transformations on a system of spin-12 particles, and so any spectrum preserving transformation is relevant. For what its worth, writing Template:Math, I obtained Oij=1a02a2[(a02+a2)δij2aiaj+2ia0ϵijkak]. Thanks anyway.

Logarithmic number

Has there been any proof that pi is not a logarithmic number?? (This means a number that can be written as b in a^b = c where a and c are natural numbers and a > 1.) It is known that all non-negative rational numbers are logarithmic, as are many irrational numbers. Georgia guy (talk) 19:37, 24 March 2015 (UTC)

Since no-one yet has answered your question, and I'm uncertain if I've understood it correctly, could you (or someone else) give an example of an irrational number b and two natural numbers a and c that satisfy the equation a^b = c? --NorwegianBlue talk 12:27, 25 March 2015 (UTC)
There is a definition of "logaritmic number" at mathworld.wolfram.com. I'm having trouble seeing that that definition and Georgia guy's definition are the same. --NorwegianBlue talk 12:38, 25 March 2015 (UTC)
They're not the same. The mathworld definition only includes rational numbers. For an irrational example of Georgia guy's notion, consider log23. It's irrational, and 2log23=3.--80.109.80.31 (talk) 12:52, 25 March 2015 (UTC)
Thanks! --NorwegianBlue talk 13:20, 25 March 2015 (UTC)