Superadditivity

From testwiki
Jump to navigation Jump to search

Template:Short description In mathematics, a function f is superadditive if f(x+y)f(x)+f(y) for all x and y in the domain of f.

Similarly, a sequence a1,a2, is called superadditive if it satisfies the inequality an+man+am for all m and n.

The term "superadditive" is also applied to functions from a boolean algebra to the real numbers where P(XY)P(X)+P(Y), such as lower probabilities.

Examples of superadditive functions

  • The map f(x)=x2 is a superadditive function for nonnegative real numbers because f(x+y)=(x+y)2=x2+y2+2xy=f(x)+f(y)+2xyf(x)+f(y).
  • The determinant is superadditive for nonnegative Hermitian matrix, that is, if A,BMatn() are nonnegative Hermitian then det(A+B)det(A)+det(B). This follows from the Minkowski determinant theorem, which more generally states that det()1/n is superadditive (equivalently, concave)[1] for nonnegative Hermitian matrices of size n: If A,BMatn() are nonnegative Hermitian then det(A+B)1/ndet(A)1/n+det(B)1/n.
  • Horst Alzer proved[2] that Hadamard's gamma function H(x) is superadditive for all real numbers x,y with x,y1.5031.[3]
  • Mutual information

Properties

If f is a superadditive function whose domain contains 0, then f(0)0. To see this, simply set x=0 and y=0 in the defining inequality.

The negative of a superadditive function is subadditive.

Fekete's lemma

The major reason for the use of superadditive sequences is the following lemma due to Michael Fekete.[4]

Lemma: (Fekete) For every superadditive sequence a1,a2,, the limit liman/n is equal to the supremum supan/n. (The limit may be positive infinity, as is the case with the sequence an=logn! for example.)

The analogue of Fekete's lemma holds for subadditive functions as well. There are extensions of Fekete's lemma that do not require the definition of superadditivity above to hold for all m and n. There are also results that allow one to deduce the rate of convergence to the limit whose existence is stated in Fekete's lemma if some kind of both superadditivity and subadditivity is present. A good exposition of this topic may be found in Steele (1997).[5][6]

See also

References

Template:Reflist

Notes

Template:PlanetMath attribution