Sublinear function

From testwiki
Jump to navigation Jump to search

Template:Short description In linear algebra, a sublinear function (or functional as is more often used in functional analysis), also called a quasi-seminorm or a Banach functional, on a vector space X is a real-valued function with only some of the properties of a seminorm. Unlike seminorms, a sublinear function does not have to be nonnegative-valued and also does not have to be absolutely homogeneous. Seminorms are themselves abstractions of the more well known notion of norms, where a seminorm has all the defining properties of a norm Template:Em that it is not required to map non-zero vectors to non-zero values.

In functional analysis the name Banach functional is sometimes used, reflecting that they are most commonly used when applying a general formulation of the Hahn–Banach theorem. The notion of a sublinear function was introduced by Stefan Banach when he proved his version of the Hahn-Banach theorem.Template:Sfn

There is also a different notion in computer science, described below, that also goes by the name "sublinear function."

Definitions

Let X be a vector space over a field 𝕂, where 𝕂 is either the real numbers or complex numbers . A real-valued function p:X on X is called a Template:Em (or a Template:Em if 𝕂=), and also sometimes called a Template:Em or a Template:Em, if it has these two properties:Template:Sfn

  1. Positive homogeneity/Nonnegative homogeneity:Template:Sfn p(rx)=rp(x) for all real r0 and all xX.
    • This condition holds if and only if p(rx)rp(x) for all positive real r>0 and all xX.
  2. Subadditivity/Triangle inequality:Template:Sfn p(x+y)p(x)+p(y) for all x,yX.
    • This subadditivity condition requires p to be real-valued.

A function p:X is called Template:EmTemplate:Sfn or Template:Em if p(x)0 for all xX, although some authorsTemplate:Sfn define Template:Em to instead mean that p(x)0 whenever x0; these definitions are not equivalent. It is a Template:Em if p(x)=p(x) for all xX. Every subadditive symmetric function is necessarily nonnegative.[proof 1] A sublinear function on a real vector space is symmetric if and only if it is a seminorm. A sublinear function on a real or complex vector space is a seminorm if and only if it is a balanced function or equivalently, if and only if p(ux)p(x) for every unit length scalar u (satisfying |u|=1) and every xX.

The set of all sublinear functions on X, denoted by X#, can be partially ordered by declaring pq if and only if p(x)q(x) for all xX. A sublinear function is called Template:Em if it is a minimal element of X# under this order. A sublinear function is minimal if and only if it is a real linear functional.Template:Sfn

Examples and sufficient conditions

Every norm, seminorm, and real linear functional is a sublinear function. The identity function on X:= is an example of a sublinear function (in fact, it is even a linear functional) that is neither positive nor a seminorm; the same is true of this map's negation xx.Template:Sfn More generally, for any real ab, the map Sa,b:x{ax if x0bx if x0 is a sublinear function on X:= and moreover, every sublinear function p: is of this form; specifically, if a:=p(1) and b:=p(1) then ab and p=Sa,b.

If p and q are sublinear functions on a real vector space X then so is the map xmax{p(x),q(x)}. More generally, if 𝒫 is any non-empty collection of sublinear functionals on a real vector space X and if for all xX, q(x):=sup{p(x):p𝒫}, then q is a sublinear functional on X.Template:Sfn


A function p:X which is subadditive, convex, and satisfies p(0)0 is also positively homogeneous (the latter condition p(0)0 is necessary as the example of p(x):=x2+1 on X:= shows). If p is positively homogeneous, it is convex if and only if it is subadditive. Therefore, assuming p(0)0, any two properties among subadditivity, convexity, and positive homogeneity implies the third.

Properties

Every sublinear function is a convex function: For 0t1, p(tx+(1t)y)p(tx)+p((1t)y) subadditivity=tp(x)+(1t)p(y) nonnegative homogeneity

If p:X is a sublinear function on a vector space X then[proof 2]Template:Sfn p(0)=0p(x)+p(x), for every xX, which implies that at least one of p(x) and p(x) must be nonnegative; that is, for every xX,Template:Sfn 0max{p(x),p(x)}. Moreover, when p:X is a sublinear function on a real vector space then the map q:X defined by q(x)=defmax{p(x),p(x)} is a seminorm.Template:Sfn

Subadditivity of p:X guarantees that for all vectors x,yX,Template:Sfn[proof 3] p(x)p(y)p(xy), p(x)p(x), so if p is also symmetric then the reverse triangle inequality will hold for all vectors x,yX, |p(x)p(y)|p(xy).

Defining kerp=defp1(0), then subadditivity also guarantees that for all xX, the value of p on the set x+(kerpkerp)={x+k:p(k)=0=p(k)} is constant and equal to p(x).[proof 4] In particular, if kerp=p1(0) is a vector subspace of X then kerp=kerp and the assignment x+kerpp(x), which will be denoted by p^, is a well-defined real-valued sublinear function on the quotient space X/kerp that satisfies p^1(0)=kerp. If p is a seminorm then p^ is just the usual canonical norm on the quotient space X/kerp.

Template:Math theorem

Adding bc to both sides of the hypothesis p(x)+ac<infp(x+aK) (where p(x+aK)=def{p(x+ak):kK}) and combining that with the conclusion gives p(x)+ac+bc<infp(x+aK)+bcp(x+a𝐳)+bc<infp(x+a𝐳+bK) which yields many more inequalities, including, for instance, p(x)+ac+bc<p(x+a𝐳)+bc<p(x+a𝐳+b𝐳) in which an expression on one side of a strict inequality < can be obtained from the other by replacing the symbol c with 𝐳 (or vice versa) and moving the closing parenthesis to the right (or left) of an adjacent summand (all other symbols remain fixed and unchanged).

Associated seminorm

If p:X is a real-valued sublinear function on a real vector space X (or if X is complex, then when it is considered as a real vector space) then the map q(x)=defmax{p(x),p(x)} defines a seminorm on the real vector space X called the seminorm associated with p.Template:Sfn A sublinear function p on a real or complex vector space is a symmetric function if and only if p=q where q(x)=defmax{p(x),p(x)} as before.

More generally, if p:X is a real-valued sublinear function on a (real or complex) vector space X then q(x)=defsup|u|=1p(ux)=sup{p(ux):u is a unit scalar } will define a seminorm on X if this supremum is always a real number (that is, never equal to ).

Relation to linear functionals

If p is a sublinear function on a real vector space X then the following are equivalent:Template:Sfn

  1. p is a linear functional.
  2. for every xX, p(x)+p(x)0.
  3. for every xX, p(x)+p(x)=0.
  4. p is a minimal sublinear function.

If p is a sublinear function on a real vector space X then there exists a linear functional f on X such that fp.Template:Sfn

If X is a real vector space, f is a linear functional on X, and p is a positive sublinear function on X, then fp on X if and only if f1(1){xX:p(x)<1}=.Template:Sfn

Dominating a linear functional

A real-valued function f defined on a subset of a real or complex vector space X is said to be Template:Em a sublinear function p if f(x)p(x) for every x that belongs to the domain of f. If f:X is a real linear functional on X thenTemplate:SfnTemplate:Sfn f is dominated by p (that is, fp) if and only if p(x)f(x)p(x) for every xX. Moreover, if p is a seminorm or some other Template:Em (which by definition means that p(x)=p(x) holds for all x) then fp if and only if |f|p.

Template:Math theorem

Continuity

Template:Math theorem

Suppose X is a topological vector space (TVS) over the real or complex numbers and p is a sublinear function on X. Then the following are equivalent:Template:Sfn

  1. p is continuous;
  2. p is continuous at 0;
  3. p is uniformly continuous on X;

and if p is positive then this list may be extended to include:

  1. {xX:p(x)<1} is open in X.

If X is a real TVS, f is a linear functional on X, and p is a continuous sublinear function on X, then fp on X implies that f is continuous.Template:Sfn

Relation to Minkowski functions and open convex sets

Template:Math theorem

Relation to open convex sets

Template:Math theorem

Template:Math proof

Operators

The concept can be extended to operators that are homogeneous and subadditive. This requires only that the codomain be, say, an ordered vector space to make sense of the conditions.

Computer science definition

In computer science, a function f:+ is called sublinear if limnf(n)n=0, or f(n)o(n) in asymptotic notation (notice the small o). Formally, f(n)o(n) if and only if, for any given c>0, there exists an N such that f(n)<cn for nN.[1] That is, f grows slower than any linear function. The two meanings should not be confused: while a Banach functional is convex, almost the opposite is true for functions of sublinear growth: every function f(n)o(n) can be upper-bounded by a concave function of sublinear growth.[2]

See also

Notes

Template:Reflist

Proofs

Template:Reflist

References

Template:Reflist

Bibliography

Template:Functional analysis Template:Topological vector spaces


Cite error: <ref> tags exist for a group named "proof", but no corresponding <references group="proof"/> tag was found