Strictly positive measure

From testwiki
Jump to navigation Jump to search

Template:Unreferenced In mathematics, strict positivity is a concept in measure theory. Intuitively, a strictly positive measure is one that is "nowhere zero", or that is zero "only on points".

Definition

Let (X,T) be a Hausdorff topological space and let Σ be a σ-algebra on X that contains the topology T (so that every open set is a measurable set, and Σ is at least as fine as the Borel σ-algebra on X). Then a measure μ on (X,Σ) is called strictly positive if every non-empty open subset of X has strictly positive measure.

More concisely, μ is strictly positive if and only if for all UT such that U,μ(U)>0.

Examples

  • Counting measure on any set X (with any topology) is strictly positive.
  • Dirac measure is usually not strictly positive unless the topology T is particularly "coarse" (contains "few" sets). For example, δ0 on the real line with its usual Borel topology and σ-algebra is not strictly positive; however, if is equipped with the trivial topology T={,}, then δ0 is strictly positive. This example illustrates the importance of the topology in determining strict positivity.
  • Gaussian measure on Euclidean space n (with its Borel topology and σ-algebra) is strictly positive.
    • Wiener measure on the space of continuous paths in n is a strictly positive measure — Wiener measure is an example of a Gaussian measure on an infinite-dimensional space.
  • Lebesgue measure on n (with its Borel topology and σ-algebra) is strictly positive.
  • The trivial measure is never strictly positive, regardless of the space X or the topology used, except when X is empty.

Properties

  • If μ and ν are two measures on a measurable topological space (X,Σ), with μ strictly positive and also absolutely continuous with respect to ν, then ν is strictly positive as well. The proof is simple: let UX be an arbitrary open set; since μ is strictly positive, μ(U)>0; by absolute continuity, ν(U)>0 as well.
  • Hence, strict positivity is an invariant with respect to equivalence of measures.

See also

References

Template:Reflist

Template:Measure theory