Stanley's reciprocity theorem

From testwiki
Jump to navigation Jump to search

Template:Short description In combinatorial mathematics, Stanley's reciprocity theorem, named after MIT mathematician Richard P. Stanley, states that a certain functional equation is satisfied by the generating function of any rational cone (defined below) and the generating function of the cone's interior.

Definitions

A rational cone is the set of all d-tuples

(a1, ..., ad)

of nonnegative integers satisfying a system of inequalities

M[a1ad][00]

where M is a matrix of integers. A d-tuple satisfying the corresponding strict inequalities, i.e., with ">" rather than "≥", is in the interior of the cone.

The generating function of such a cone is

F(x1,,xd)=(a1,,ad)conex1a1xdad.

The generating function Fint(x1, ..., xd) of the interior of the cone is defined in the same way, but one sums over d-tuples in the interior rather than in the whole cone.

It can be shown that these are rational functions.

Formulation

Stanley's reciprocity theorem states that for a rational cone as above, we have[1]

F(1/x1,,1/xd)=(1)dFint(x1,,xd).

Matthias Beck and Mike Develin have shown how to prove this by using the calculus of residues.[2]

Stanley's reciprocity theorem generalizes Ehrhart-Macdonald reciprocity for Ehrhart polynomials of rational convex polytopes.

See also

References

Template:Reflist