Stability postulate

From testwiki
Jump to navigation Jump to search

Template:More citations needed

In probability theory, to obtain a nondegenerate limiting distribution for extremes of samples, it is necessary to "reduce" the actual greatest value by applying a linear transformation with coefficients that depend on the sample size.

If  X1, X2, , Xn  are independent random variables with common probability density function  (Xj=x)fX(x) ,

then the cumulative distribution function  FYn  for  Ynmax{ X1, , Xn }  is given by the simple relation

FYn(y)=[ FX(y) ]n.

If there is a limiting distribution for the distribution of interest, the stability postulate states that the limiting distribution must be for some sequence of transformed or "reduced" values, such as  ( an Yn+bn ) , where  an, bn  may depend on Template:Nobr but not Template:Nobr This equation was obtained by Maurice René Fréchet and also by Ronald Fisher.

Only three possible distributions

To distinguish the limiting cumulative distribution function from the "reduced" greatest value from  F(x) , we will denote it by  G(y). It follows that  G(y)  must satisfy the functional equation

 [ G(y) ]n=G( an y+bn ).

Boris Vladimirovich Gnedenko has shown there are no other distributions satisfying the stability postulate other than the following three:[1]

  • Gumbel distribution for the minimum stability postulate
    • If  Xi=Gumbel( μ, β)  and  Ymin{ X1, , Xn }  then  Yan X+bn ,
      where  an=1  and  bn=β logn ;
    • In other words,  YGumbel( μβ logn , β ).


  • Weibull distribution (extreme value) for the maximum stability postulate
    • If  Xi=Weibull( μ, σ )  and  Ymax{X1,,Xn}  then  Yan X+bn ,
      where  an=1  and  bn=σ log(1n) ;
    • In other words,  YWeibull( μσlog(1n ) , σ ).


  • Fréchet distribution for the maximum stability postulate
    • If  Xi=Frechet( α, s, m )  and  Ymax{ X1, , Xn }  then  Yan X+bn ,
      where  an=n1α  and  bn=m(1n1α) ;
    • In other words,  YFrechet( α,n1αs , m ).

References

Template:Reflist


Template:Statistics-stub Template:Probability-stub