Solar zenith angle

From testwiki
Jump to navigation Jump to search

Template:Short description

The solar zenith angle is the zenith angle of the sun, i.e., the angle between the sun’s rays and the vertical direction. It is the complement to the solar altitude or solar elevation, which is the altitude angle or elevation angle between the sun’s rays and a horizontal plane.[1][2] At solar noon, the zenith angle is at a minimum and is equal to latitude minus solar declination angle. This is the basis by which ancient mariners navigated the oceans.[3]Template:TOC right Solar zenith angle is normally used in combination with the solar azimuth angle to determine the position of the Sun as observed from a given location on the surface of the Earth.

Formula

cosθs=sinαs=sinΦsinδ+cosΦcosδcosh

where

Derivation of the formula using the subsolar point and vector analysis

While the formula can be derived by applying the cosine law to the zenith-pole-Sun spherical triangle, the spherical trigonometry is a relatively esoteric subject.

By introducing the coordinates of the subsolar point and using vector analysis, the formula can be obtained straightforward without incurring the use of spherical trigonometry.[4]

In the Earth-Centered Earth-Fixed (ECEF) geocentric Cartesian coordinate system, let (ϕs,λs) and (ϕo,λo) be the latitudes and longitudes, or coordinates, of the subsolar point and the observer's point, then the upward-pointing unit vectors at the two points, 𝐒 and 𝐕oz, are

𝐒=cosϕscosλs𝐢+cosϕssinλs𝐣+sinϕs𝐤, 𝐕oz=cosϕocosλo𝐢+cosϕosinλo𝐣+sinϕo𝐤.

where 𝐢, 𝐣 and 𝐤 are the basis vectors in the ECEF coordinate system.

Now the cosine of the solar zenith angle, θs, is simply the dot product of the above two vectors

cosθs=𝐒𝐕oz=sinϕosinϕs+cosϕocosϕscos(λsλo).

Note that ϕs is the same as δ, the declination of the Sun, and λsλo is equivalent to h, where h is the hour angle defined earlier. So the above format is mathematically identical to the one given earlier.

Additionally, Ref. [4] also derived the formula for solar azimuth angle in a similar fashion without using spherical trigonometry.

Minimum and Maximum

The daily minimum of the solar zenith angle as a function of latitude and day of year for the year 2020.
The daily maximum of the solar zenith angle as a function of latitude and day of year for the year 2020.

At any given location on any given day, the solar zenith angle, θs, reaches its minimum, θmin, at local solar noon when the hour angle h=0, or λsλo=0, namely, cosθmin=cos(|ϕoϕs|), or θmin=|ϕoϕs|. If θmin>90, it is polar night.

And at any given location on any given day, the solar zenith angle, θs, reaches its maximum, θmax, at local midnight when the hour angle h=180, or λsλo=180, namely, cosθmax=cos(180|ϕo+ϕs|), or θmax=180|ϕo+ϕs|. If θmax<90, it is polar day.

Caveats

The calculated values are approximations due to the distinction between common/geodetic latitude and geocentric latitude. However, the two values differ by less than 12 minutes of arc, which is less than the apparent angular radius of the sun.

The formula also neglects the effect of atmospheric refraction.[5]

Applications

Sunrise/Sunset

Template:Main articles Sunset and sunrise occur (approximately) when the zenith angle is 90°, where the hour angle h0 satisfies[2] cosh0=tanΦtanδ.

Precise times of sunset and sunrise occur when the upper limb of the Sun appears, as refracted by the atmosphere, to be on the horizon.

Albedo

A weighted daily average zenith angle, used in computing the local albedo of the Earth, is given by cosθs=h0h0Qcosθsdhh0h0Qdh where Q is the instantaneous irradiance.[2]

Summary of special angles

Template:Subsolar point date graph For example, the solar elevation angle is:

  • 90° at the subsolar point, which occurs, for example, at the equator on a day of equinox at solar noon
  • near 0° at the sunset or at the sunrise
  • between −90° and 0° during the night (midnight)

An exact calculation is given in position of the Sun. Other approximations exist elsewhere.[6]

See also

References

Template:Reflist Template:Portal bar

  1. Template:Cite book
  2. 2.0 2.1 2.2 Template:Cite book
  3. Template:Cite book
  4. 4.0 4.1 Zhang, T., Stackhouse, P.W., Macpherson, B., and Mikovitz, J.C., 2021. A solar azimuth formula that renders circumstantial treatment unnecessary without compromising mathematical rigor: Mathematical setup, application and extension of a formula based on the subsolar point and atan2 function. Renewable Energy, 172, 1333-1340. DOI: https://doi.org/10.1016/j.renene.2021.03.047
  5. Template:Cite journal
  6. Template:Cite web