S2P (complexity)

From testwiki
Jump to navigation Jump to search

In computational complexity theory, STemplate:Su is a complexity class, intermediate between the first and second levels of the polynomial hierarchy. A language Template:Mvar is in 𝖲2P if there exists a polynomial-time predicate P such that

  • If xL, then there exists a y such that for all z, P(x,y,z)=1,
  • If xL, then there exists a z such that for all y, P(x,y,z)=0,

where size of y and z must be polynomial of x.

Relationship to other complexity classes

It is immediate from the definition that STemplate:Su is closed under unions, intersections, and complements. Comparing the definition with that of Σ2P and Π2P, it also follows immediately that STemplate:Su is contained in Σ2PΠ2P. This inclusion can in fact be strengthened to ZPPNP.[1]

Every language in NP also belongs to Template:Nowrap For by definition, a language L is in NP, if and only if there exists a polynomial-time verifier V(x,y), such that for every x in L there exists y for which V answers true, and such that for every x not in L, V always answers false. But such a verifier can easily be transformed into an Template:Nowrap predicate P(x,y,z) for the same language that ignores z and otherwise behaves the same as V. By the same token, co-NP belongs to Template:Nowrap These straightforward inclusions can be strengthened to show that the class Template:Nowrap contains MA (by a generalization of the Sipser–Lautemann theorem) and Δ2P (more generally, P𝖲2P=𝖲2P).

Karp–Lipton theorem

A version of Karp–Lipton theorem states that if every language in NP has polynomial size circuits then the polynomial time hierarchy collapses to STemplate:Su. This result yields a strengthening of Kannan's theorem: it is known that STemplate:Su is not contained in Template:Sans-serif(nk) for any fixed k.

Symmetric hierarchy

As an extension, it is possible to define 𝖲2 as an operator on complexity classes; then 𝖲2P=𝖲2P. Iteration of S2 operator yields a "symmetric hierarchy"; the union of the classes produced in this way is equal to the Polynomial hierarchy.

References

Template:Reflist

  1. ↑ Template:Citation. A preliminary version of this paper appeared earlier, in FOCS 2001, Template:ECCC, Template:MR, Template:Doi.