Rigidity (K-theory)
In mathematics, rigidity of K-theory encompasses results relating algebraic K-theory of different rings.
Suslin rigidity
Suslin rigidity, named after Andrei Suslin, refers to the invariance of mod-n algebraic K-theory under the base change between two algebraically closed fields: Template:Harvtxt showed that for an extension
of algebraically closed fields, and an algebraic variety X / F, there is an isomorphism
between the mod-n K-theory of coherent sheaves on X, respectively its base change to E. A textbook account of this fact in the case X = F, including the resulting computation of K-theory of algebraically closed fields in characteristic p, is in Template:Harvtxt.
This result has stimulated various other papers. For example Template:Harvtxt show that the base change functor for the mod-n stable A1-homotopy category
is fully faithful. A similar statement for non-commutative motives has been established by Template:Harvtxt.
Gabber rigidity
Another type of rigidity relates the mod-n K-theory of an henselian ring A to the one of its residue field A/m. This rigidity result is referred to as Gabber rigidity, in view of the work of Template:Harvtxt who showed that there is an isomorphism
provided that n≥1 is an integer which is invertible in A.
If n is not invertible in A, the result as above still holds, provided that K-theory is replaced by the fiber of the trace map between K-theory and topological cyclic homology. This was shown by Template:Harvtxt.
Applications
Template:Harvtxt used Gabber's and Suslin's rigidity result to reprove Quillen's computation of K-theory of finite fields.