Rellich–Kondrachov theorem

From testwiki
Jump to navigation Jump to search

Template:Short description In mathematics, the Rellich–Kondrachov theorem is a compact embedding theorem concerning Sobolev spaces. It is named after the Austrian-German mathematician Franz Rellich and the Russian mathematician Vladimir Iosifovich Kondrashov. Rellich proved the L2 theorem and Kondrashov the Lp theorem.

Statement of the theorem

Let Ω ⊆ Rn be an open, bounded Lipschitz domain, and let 1 ≤ p < n. Set

p*:=npnp.

Then the Sobolev space W1,p(Ω; R) is continuously embedded in the Lp space Lp(Ω; R) and is compactly embedded in Lq(Ω; R) for every 1 ≤ q < p. In symbols,

W1,p(Ω)Lp*(Ω)

and

W1,p(Ω)Lq(Ω) for 1q<p*.

Kondrachov embedding theorem

On a compact manifold with Template:Math boundary, the Kondrachov embedding theorem states that if Template:Math and Template:Math then the Sobolev embedding

Wk,p(M)W,q(M)

is completely continuous (compact).[1]

Consequences

Since an embedding is compact if and only if the inclusion (identity) operator is a compact operator, the Rellich–Kondrachov theorem implies that any uniformly bounded sequence in W1,p(Ω; R) has a subsequence that converges in Lq(Ω; R). Stated in this form, in the past the result was sometimes referred to as the Rellich–Kondrachov selection theorem, since one "selects" a convergent subsequence. (However, today the customary name is "compactness theorem", whereas "selection theorem" has a precise and quite different meaning, referring to set-valued functions.)

The Rellich–Kondrachov theorem may be used to prove the Poincaré inequality,[2] which states that for u ∈ W1,p(Ω; R) (where Ω satisfies the same hypotheses as above),

uuΩLp(Ω)CuLp(Ω)

for some constant C depending only on p and the geometry of the domain Ω, where

uΩ:=1meas(Ω)Ωu(x)dx

denotes the mean value of u over Ω.

References

Literature