Reach (mathematics)

From testwiki
Jump to navigation Jump to search

Template:One source Let X be a subset of Rn. Then the reach of X is defined as

reach(X):=sup{r:xnX with dist(x,X)<r exists a unique closest point yX such that dist(x,y)=dist(x,X)}.

Examples

Shapes that have reach infinity include

  • a single point,
  • a straight line,
  • a full square, and
  • any convex set.

The graph of ƒ(x) = |x| has reach zero.

A circle of radius r has reach r.

References